Topological structure on ereal #
We endow ereal with the order topology, and prove basic properties of this topology.
Main results #
coe : ℝ → erealis an open embeddingcoe : ℝ≥0∞ → erealis an embedding- The addition on
erealis continuous except at(⊥, ⊤)and at(⊤, ⊥). - Negation is a homeomorphism on
ereal.
Implementation #
Most proofs are adapted from the corresponding proofs on ℝ≥0∞.
@[protected, instance]
Equations
@[protected, instance]
Real coercion #
@[norm_cast]
theorem
ereal.tendsto_coe
{α : Type u_1}
{f : filter α}
{m : α → ℝ}
{a : ℝ} :
filter.tendsto (λ (a : α), ↑(m a)) f (nhds ↑a) ↔ filter.tendsto m f (nhds a)
theorem
ereal.continuous_coe_iff
{α : Type u_1}
[topological_space α]
{f : α → ℝ} :
continuous (λ (a : α), ↑(f a)) ↔ continuous f
theorem
ereal.tendsto_to_real
{a : ereal}
(ha : a ≠ ⊤)
(h'a : a ≠ ⊥) :
filter.tendsto ereal.to_real (nhds a) (nhds a.to_real)
The set of finite ereal numbers is homeomorphic to ℝ.
Equations
- ereal.ne_bot_top_homeomorph_real = {to_equiv := {to_fun := ereal.ne_top_bot_equiv_real.to_fun, inv_fun := ereal.ne_top_bot_equiv_real.inv_fun, left_inv := ereal.ne_bot_top_homeomorph_real._proof_1, right_inv := ereal.ne_bot_top_homeomorph_real._proof_2}, continuous_to_fun := ereal.ne_bot_top_homeomorph_real._proof_3, continuous_inv_fun := ereal.ne_bot_top_homeomorph_real._proof_4}
ennreal coercion #
@[norm_cast]
theorem
ereal.tendsto_coe_ennreal
{α : Type u_1}
{f : filter α}
{m : α → ennreal}
{a : ennreal} :
filter.tendsto (λ (a : α), ↑(m a)) f (nhds ↑a) ↔ filter.tendsto m f (nhds a)
theorem
ereal.continuous_coe_ennreal_iff
{α : Type u_1}
[topological_space α]
{f : α → ennreal} :
continuous (λ (a : α), ↑(f a)) ↔ continuous f
Neighborhoods of infinity #
Continuity of addition #
Negation #
Negation on ereal as a homeomorphism