Factoring through subobjects #
The predicate h : P.factors f, for P : subobject Y and f : X ⟶ Y
asserts the existence of some P.factor_thru f : X ⟶ (P : C) making the obvious diagram commute.
When f : X ⟶ Y and P : mono_over Y,
P.factors f expresses that there exists a factorisation of f through P.
Given h : P.factors f, you can recover the morphism as P.factor_thru f h.
P.factor_thru f h provides a factorisation of f : X ⟶ Y through some P : mono_over Y,
given the evidence h : P.factors f that such a factorisation exists.
Equations
- P.factor_thru f h = classical.some h
When f : X ⟶ Y and P : subobject Y,
P.factors f expresses that there exists a factorisation of f through P.
Given h : P.factors f, you can recover the morphism as P.factor_thru f h.
Equations
- P.factors f = quotient.lift_on' P (λ (P : category_theory.mono_over Y), P.factors f) _
P.factor_thru f h provides a factorisation of f : X ⟶ Y through some P : subobject Y,
given the evidence h : P.factors f that such a factorisation exists.
Equations
- P.factor_thru f h = classical.some _