Universal enveloping algebra #
Given a commutative ring R
and a Lie algebra L
over R
, we construct the universal
enveloping algebra of L
, together with its universal property.
Main definitions #
universal_enveloping_algebra
: the universal enveloping algebra, endowed with anR
-algebra structure.universal_enveloping_algebra.ι
: the Lie algebra morphism fromL
to its universal enveloping algebra.universal_enveloping_algebra.lift
: given an associative algebraA
, together with a Lie algebra morphismf : L →ₗ⁅R⁆ A
,lift R L f : universal_enveloping_algebra R L →ₐ[R] A
is the unique morphism of algebras through whichf
factors.universal_enveloping_algebra.ι_comp_lift
: states that the lift of a morphism is indeed part of a factorisation.universal_enveloping_algebra.lift_unique
: states that lifts of morphisms are indeed unique.universal_enveloping_algebra.hom_ext
: a restatement oflift_unique
as an extensionality lemma.
Tags #
lie algebra, universal enveloping algebra, tensor algebra
- lie_compat : ∀ {R : Type u₁} {L : Type u₂} [_inst_1 : comm_ring R] [_inst_2 : lie_ring L] [_inst_3 : lie_algebra R L] (x y : L), universal_enveloping_algebra.rel R L (⇑(tensor_algebra.ι R) ⁅x,y⁆ + ⇑(tensor_algebra.ι R) y * ⇑(tensor_algebra.ι R) x) (⇑(tensor_algebra.ι R) x * ⇑(tensor_algebra.ι R) y)
The quotient by the ideal generated by this relation is the universal enveloping algebra.
Note that we have avoided using the more natural expression: | lie_compat (x y : L) : rel (ιₜ ⁅x, y⁆) ⁅ιₜ x, ιₜ y⁆ so that our construction needs only the semiring structure of the tensor algebra.
The universal enveloping algebra of a Lie algebra.
Equations
Instances for universal_enveloping_algebra
The quotient map from the tensor algebra to the universal enveloping algebra as a morphism of associative algebras.
Equations
The natural Lie algebra morphism from a Lie algebra to its universal enveloping algebra.
Equations
- universal_enveloping_algebra.ι R = {to_linear_map := {to_fun := ((universal_enveloping_algebra.mk_alg_hom R L).to_linear_map.comp (tensor_algebra.ι R)).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
The universal property of the universal enveloping algebra: Lie algebra morphisms into associative algebras lift to associative algebra morphisms from the universal enveloping algebra.
Equations
- universal_enveloping_algebra.lift R = {to_fun := λ (f : L →ₗ⁅R⁆ A), ⇑(ring_quot.lift_alg_hom R) ⟨⇑(tensor_algebra.lift R) ↑f, _⟩, inv_fun := λ (F : universal_enveloping_algebra R L →ₐ[R] A), ↑F.comp (universal_enveloping_algebra.ι R), left_inv := _, right_inv := _}