Ringed spaces #
We introduce the category of ringed spaces, as an alias for SheafedSpace CommRing.
The facts collected in this file are typically stated for locally ringed spaces, but never actually make use of the locality of stalks. See for instance https://stacks.math.columbia.edu/tag/01HZ.
@[reducible]
The type of Ringed spaces, as an abbreviation for SheafedSpace CommRing.
theorem
algebraic_geometry.RingedSpace.is_unit_res_of_is_unit_germ
(X : algebraic_geometry.RingedSpace)
(U : topological_space.opens ↥X)
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U)))
(x : ↥U)
(h : is_unit (⇑(X.to_PresheafedSpace.presheaf.germ x) f)) :
If the germ of a section f is a unit in the stalk at x, then f must be a unit on some small
neighborhood around x.
theorem
algebraic_geometry.RingedSpace.is_unit_of_is_unit_germ
(X : algebraic_geometry.RingedSpace)
(U : topological_space.opens ↥X)
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U)))
(h : ∀ (x : ↥U), is_unit (⇑(X.to_PresheafedSpace.presheaf.germ x) f)) :
is_unit f
If a section f is a unit in each stalk, f must be a unit.
def
algebraic_geometry.RingedSpace.basic_open
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U))) :
The basic open of a section f is the set of all points x, such that the germ of f at
x is a unit.
@[simp]
theorem
algebraic_geometry.RingedSpace.mem_basic_open
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U)))
(x : ↥U) :
↑x ∈ X.basic_open f ↔ is_unit (⇑(X.to_PresheafedSpace.presheaf.germ x) f)
@[simp]
theorem
algebraic_geometry.RingedSpace.mem_top_basic_open
(X : algebraic_geometry.RingedSpace)
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op ⊤)))
(x : ↥X) :
x ∈ X.basic_open f ↔ is_unit (⇑(X.to_PresheafedSpace.presheaf.germ ⟨x, _⟩) f)
theorem
algebraic_geometry.RingedSpace.basic_open_subset
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U))) :
X.basic_open f ⊆ U
theorem
algebraic_geometry.RingedSpace.is_unit_res_basic_open
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
(f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U))) :
is_unit (⇑(X.to_PresheafedSpace.presheaf.map (category_theory.hom_of_le _).op) f)
The restriction of a section f to the basic open of f is a unit.
@[simp]
theorem
algebraic_geometry.RingedSpace.basic_open_res
(X : algebraic_geometry.RingedSpace)
{U V : (topological_space.opens ↥X)ᵒᵖ}
(i : U ⟶ V)
(f : ↥(X.to_PresheafedSpace.presheaf.obj U)) :
X.basic_open (⇑(X.to_PresheafedSpace.presheaf.map i) f) = opposite.unop V ∩ X.basic_open f
@[simp]
theorem
algebraic_geometry.RingedSpace.basic_open_res_eq
(X : algebraic_geometry.RingedSpace)
{U V : (topological_space.opens ↥X)ᵒᵖ}
(i : U ⟶ V)
[category_theory.is_iso i]
(f : ↥(X.to_PresheafedSpace.presheaf.obj U)) :
X.basic_open (⇑(X.to_PresheafedSpace.presheaf.map i) f) = X.basic_open f
@[simp]
theorem
algebraic_geometry.RingedSpace.basic_open_mul
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
(f g : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U))) :
X.basic_open (f * g) = X.basic_open f ⊓ X.basic_open g
theorem
algebraic_geometry.RingedSpace.basic_open_of_is_unit
(X : algebraic_geometry.RingedSpace)
{U : topological_space.opens ↥X}
{f : ↥(X.to_PresheafedSpace.presheaf.obj (opposite.op U))}
(hf : is_unit f) :
X.basic_open f = U