Category of groupoids #
This file contains the definition of the category Groupoid
of all groupoids.
In this category objects are groupoids and morphisms are functors
between these groupoids.
We also provide two “forgetting” functors: objects : Groupoid ⥤ Type
and forget_to_Cat : Groupoid ⥤ Cat
.
Implementation notes #
Though Groupoid
is not a concrete category, we use bundled
to define
its carrier type.
Category of groupoids
Instances for category_theory.Groupoid
Construct a bundled Groupoid
from the underlying type and the typeclass.
Equations
Category structure on Groupoid
Equations
- category_theory.Groupoid.category = {to_category_struct := {to_quiver := {hom := λ (C D : category_theory.Groupoid), ↥C ⥤ ↥D}, id := λ (C : category_theory.Groupoid), 𝟭 ↥C, comp := λ (C D E : category_theory.Groupoid) (F : C ⟶ D) (G : D ⟶ E), F ⋙ G}, id_comp' := category_theory.Groupoid.category._proof_1, comp_id' := category_theory.Groupoid.category._proof_2, assoc' := category_theory.Groupoid.category._proof_3}
Functor that gets the set of objects of a groupoid. It is not
called forget
, because it is not a faithful functor.
Equations
- category_theory.Groupoid.objects = {obj := category_theory.bundled.α category_theory.groupoid, map := λ (C D : category_theory.Groupoid) (F : C ⟶ D), F.obj, map_id' := category_theory.Groupoid.objects._proof_1, map_comp' := category_theory.Groupoid.objects._proof_2}
Forgetting functor to Cat
Equations
- category_theory.Groupoid.forget_to_Cat = {obj := λ (C : category_theory.Groupoid), category_theory.Cat.of ↥C, map := λ (C D : category_theory.Groupoid), id, map_id' := category_theory.Groupoid.forget_to_Cat._proof_1, map_comp' := category_theory.Groupoid.forget_to_Cat._proof_2}
Instances for category_theory.Groupoid.forget_to_Cat
Equations
- category_theory.Groupoid.forget_to_Cat_full = {preimage := λ (C D : category_theory.Groupoid), id, witness' := category_theory.Groupoid.forget_to_Cat_full._proof_1}
Convert arrows in the category of groupoids to functors, which sometimes helps in applying simp lemmas
Converts identity in the category of groupoids to the functor identity
Construct the product over an indexed family of groupoids, as a fan.
Equations
- category_theory.Groupoid.pi_limit_fan F = category_theory.limits.fan.mk (category_theory.Groupoid.of (Π (j : J), ↥(F j))) (λ (j : J), category_theory.pi.eval (λ (j : J), ↥(F j)) j)
The product fan over an indexed family of groupoids, is a limit cone.
Equations
- category_theory.Groupoid.pi_limit_fan_is_limit F = category_theory.limits.mk_fan_limit (category_theory.Groupoid.pi_limit_fan F) (λ (s : category_theory.limits.fan F), category_theory.functor.pi' (λ (j : J), s.proj j)) _ _
The product of a family of groupoids is isomorphic to the product object in the category of Groupoids