# mathlibdocumentation

algebra.lie.cartan_subalgebra

# Cartan subalgebras #

Cartan subalgebras are one of the most important concepts in Lie theory. We define them here. The standard example is the set of diagonal matrices in the Lie algebra of matrices.

## Main definitions #

• lie_submodule.is_ucs_limit
• lie_subalgebra.is_cartan_subalgebra
• lie_subalgebra.is_cartan_subalgebra_iff_is_ucs_limit

## Tags #

lie subalgebra, normalizer, idealizer, cartan subalgebra

def lie_submodule.is_ucs_limit {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] {M : Type u_1} [ M] [ M] [ L M] (N : M) :
Prop

Given a Lie module M of a Lie algebra L, lie_submodule.is_ucs_limit is the proposition that a Lie submodule N ⊆ M is the limiting value for the upper central series.

This is a characteristic property of Cartan subalgebras with the roles of L, M, N played by H, L, H, respectively. See lie_subalgebra.is_cartan_subalgebra_iff_is_ucs_limit.

Equations
@[class]
structure lie_subalgebra.is_cartan_subalgebra {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (H : L) :
Prop

A Cartan subalgebra is a nilpotent, self-normalizing subalgebra.

Instances of this typeclass
@[protected, instance]
def lie_subalgebra.lie_algebra.is_nilpotent {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (H : L)  :
@[simp]
theorem lie_subalgebra.centralizer_eq_self_of_is_cartan_subalgebra {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (H : L)  :
@[simp]
theorem lie_subalgebra.ucs_eq_self_of_is_cartan_subalgebra {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (H : L) (k : ) :
theorem lie_subalgebra.is_cartan_subalgebra_iff_is_ucs_limit {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (H : L) :
@[simp]
theorem lie_ideal.normalizer_eq_top {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L] (I : L) :
@[protected, instance]
def lie_algebra.top_is_cartan_subalgebra_of_nilpotent {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [ L]  :

A nilpotent Lie algebra is its own Cartan subalgebra.