Monads #
We construct the categories of monads and comonads, and their forgetful functors to endofunctors.
(Note that these are the category theorist's monads, not the programmers monads.
For the translation, see the file category_theory.monad.types
.)
For the fact that monads are "just" monoids in the category of endofunctors, see the file
category_theory.monad.equiv_mon
.
- to_functor : C ⥤ C
- η' : 𝟭 C ⟶ self.to_functor
- μ' : self.to_functor ⋙ self.to_functor ⟶ self.to_functor
- assoc' : (∀ (X : C), self.to_functor.map (self.μ'.app X) ≫ self.μ'.app X = self.μ'.app (self.to_functor.obj X) ≫ self.μ'.app X) . "obviously"
- left_unit' : (∀ (X : C), self.η'.app (self.to_functor.obj X) ≫ self.μ'.app X = 𝟙 ((𝟭 C).obj (self.to_functor.obj X))) . "obviously"
- right_unit' : (∀ (X : C), self.to_functor.map (self.η'.app X) ≫ self.μ'.app X = 𝟙 (self.to_functor.obj ((𝟭 C).obj X))) . "obviously"
The data of a monad on C consists of an endofunctor T together with natural transformations η : 𝟭 C ⟶ T and μ : T ⋙ T ⟶ T satisfying three equations:
- T μ_X ≫ μ_X = μ_(TX) ≫ μ_X (associativity)
- η_(TX) ≫ μ_X = 1_X (left unit)
- Tη_X ≫ μ_X = 1_X (right unit)
Instances for category_theory.monad
- category_theory.monad.has_sizeof_inst
- category_theory.coe_monad
- category_theory.monad.category
- category_theory.monad.inhabited
- to_functor : C ⥤ C
- ε' : self.to_functor ⟶ 𝟭 C
- δ' : self.to_functor ⟶ self.to_functor ⋙ self.to_functor
- coassoc' : (∀ (X : C), self.δ'.app X ≫ self.to_functor.map (self.δ'.app X) = self.δ'.app X ≫ self.δ'.app (self.to_functor.obj X)) . "obviously"
- left_counit' : (∀ (X : C), self.δ'.app X ≫ self.ε'.app (self.to_functor.obj X) = 𝟙 (self.to_functor.obj X)) . "obviously"
- right_counit' : (∀ (X : C), self.δ'.app X ≫ self.to_functor.map (self.ε'.app X) = 𝟙 (self.to_functor.obj X)) . "obviously"
The data of a comonad on C consists of an endofunctor G together with natural transformations ε : G ⟶ 𝟭 C and δ : G ⟶ G ⋙ G satisfying three equations:
- δ_X ≫ G δ_X = δ_X ≫ δ_(GX) (coassociativity)
- δ_X ≫ ε_(GX) = 1_X (left counit)
- δ_X ≫ G ε_X = 1_X (right counit)
Instances for category_theory.comonad
- category_theory.comonad.has_sizeof_inst
- category_theory.coe_comonad
- category_theory.comonad.category
- category_theory.comonad.inhabited
Equations
- category_theory.coe_monad = {coe := λ (T : category_theory.monad C), T.to_functor}
Equations
- category_theory.coe_comonad = {coe := λ (G : category_theory.comonad C), G.to_functor}
The unit for the monad T
.
The multiplication for the monad T
.
Instances for category_theory.monad.μ
The counit for the comonad G
.
The comultiplication for the comonad G
.
A custom simps projection for the functor part of a monad, as a coercion.
Equations
A custom simps projection for the unit of a monad, in simp normal form.
Equations
A custom simps projection for the multiplication of a monad, in simp normal form.
Equations
A custom simps projection for the functor part of a comonad, as a coercion.
Equations
A custom simps projection for the counit of a comonad, in simp normal form.
Equations
A custom simps projection for the comultiplication of a comonad, in simp normal form.
Equations
- to_nat_trans : category_theory.nat_trans ↑T₁ ↑T₂
- app_η' : (∀ (X : C), T₁.η.app X ≫ self.to_nat_trans.app X = T₂.η.app X) . "obviously"
- app_μ' : (∀ (X : C), T₁.μ.app X ≫ self.to_nat_trans.app X = (↑T₁.map (self.to_nat_trans.app X) ≫ self.to_nat_trans.app (↑T₂.obj X)) ≫ T₂.μ.app X) . "obviously"
A morphism of monads is a natural transformation compatible with η and μ.
Instances for category_theory.monad_hom
- category_theory.monad_hom.has_sizeof_inst
- category_theory.monad_hom.inhabited
- to_nat_trans : category_theory.nat_trans ↑M ↑N
- app_ε' : (∀ (X : C), self.to_nat_trans.app X ≫ N.ε.app X = M.ε.app X) . "obviously"
- app_δ' : (∀ (X : C), self.to_nat_trans.app X ≫ N.δ.app X = M.δ.app X ≫ self.to_nat_trans.app (↑M.obj X) ≫ ↑N.map (self.to_nat_trans.app X)) . "obviously"
A morphism of comonads is a natural transformation compatible with ε and δ.
Instances for category_theory.comonad_hom
- category_theory.comonad_hom.has_sizeof_inst
- category_theory.comonad_hom.inhabited
Equations
- category_theory.monad.category = {to_category_struct := {to_quiver := {hom := category_theory.monad_hom _inst_1}, id := λ (M : category_theory.monad C), {to_nat_trans := 𝟙 ↑M, app_η' := _, app_μ' := _}, comp := λ (_x _x_1 _x_2 : category_theory.monad C) (f : _x ⟶ _x_1) (g : _x_1 ⟶ _x_2), {to_nat_trans := {app := λ (X : C), f.to_nat_trans.app X ≫ g.to_nat_trans.app X, naturality' := _}, app_η' := _, app_μ' := _}}, id_comp' := _, comp_id' := _, assoc' := _}
Equations
- category_theory.comonad.category = {to_category_struct := {to_quiver := {hom := category_theory.comonad_hom _inst_1}, id := λ (M : category_theory.comonad C), {to_nat_trans := 𝟙 ↑M, app_ε' := _, app_δ' := _}, comp := λ (M N L : category_theory.comonad C) (f : M ⟶ N) (g : N ⟶ L), {to_nat_trans := {app := λ (X : C), f.to_nat_trans.app X ≫ g.to_nat_trans.app X, naturality' := _}, app_ε' := _, app_δ' := _}}, id_comp' := _, comp_id' := _, assoc' := _}
Equations
Equations
Construct a monad isomorphism from a natural isomorphism of functors where the forward direction is a monad morphism.
Equations
- category_theory.monad_iso.mk f f_η f_μ = {hom := {to_nat_trans := f.hom, app_η' := f_η, app_μ' := f_μ}, inv := {to_nat_trans := f.inv, app_η' := _, app_μ' := _}, hom_inv_id' := _, inv_hom_id' := _}
Construct a comonad isomorphism from a natural isomorphism of functors where the forward direction is a comonad morphism.
Equations
- category_theory.comonad_iso.mk f f_ε f_δ = {hom := {to_nat_trans := f.hom, app_ε' := f_ε, app_δ' := f_δ}, inv := {to_nat_trans := f.inv, app_ε' := _, app_δ' := _}, hom_inv_id' := _, inv_hom_id' := _}
The forgetful functor from the category of monads to the category of endofunctors.
Equations
- category_theory.monad_to_functor C = {obj := λ (T : category_theory.monad C), ↑T, map := λ (M N : category_theory.monad C) (f : M ⟶ N), f.to_nat_trans, map_id' := _, map_comp' := _}
Instances for category_theory.monad_to_functor
The forgetful functor from the category of comonads to the category of endofunctors.
Equations
- category_theory.comonad_to_functor C = {obj := λ (G : category_theory.comonad C), ↑G, map := λ (M N : category_theory.comonad C) (f : M ⟶ N), f.to_nat_trans, map_id' := _, map_comp' := _}
Instances for category_theory.comonad_to_functor
An isomorphism of monads gives a natural isomorphism of the underlying functors.
Equations
An isomorphism of comonads gives a natural isomorphism of the underlying functors.
Equations
The identity monad.
Equations
- category_theory.monad.id C = {to_functor := 𝟭 C _inst_1, η' := 𝟙 (𝟭 C), μ' := 𝟙 (𝟭 C), assoc' := _, left_unit' := _, right_unit' := _}
Equations
- category_theory.monad.inhabited C = {default := category_theory.monad.id C _inst_1}
The identity comonad.
Equations
- category_theory.comonad.id C = {to_functor := 𝟭 C _inst_1, ε' := 𝟙 (𝟭 C), δ' := 𝟙 (𝟭 C), coassoc' := _, left_counit' := _, right_counit' := _}
Equations
- category_theory.comonad.inhabited C = {default := category_theory.comonad.id C _inst_1}