Closure, interior, and frontier of preimages under re and im #
In this fact we use the fact that ℂ is naturally homeomorphic to ℝ × ℝ to deduce some
topological properties of complex.re and complex.im.
Main statements #
Each statement about complex.re listed below has a counterpart about complex.im.
complex.is_trivial_topological_fiber_bundle_re:complex.returnsℂinto a trivial topological fiber bundle overℝ;complex.is_open_map_re,complex.quotient_map_re: in particular,complex.reis an open map and is a quotient map;complex.interior_preimage_re,complex.closure_preimage_re,complex.frontier_preimage_re: formulas forinterior (complex.re ⁻¹' s)etc;complex.interior_set_of_re_leetc: particular cases of the above formulas in the cases whensis one of the infinite intervalsset.Ioi a,set.Ici a,set.Iio a, andset.Iic a, formulated asinterior {z : ℂ | z.re ≤ a} = {z | z.re < a}etc.
Tags #
complex, real part, imaginary part, closure, interior, frontier
complex.re turns ℂ into a trivial topological fiber bundle over ℝ.
complex.im turns ℂ into a trivial topological fiber bundle over ℝ.
theorem
complex.interior_preimage_re
(s : set ℝ) :
interior (complex.re ⁻¹' s) = complex.re ⁻¹' interior s
theorem
complex.interior_preimage_im
(s : set ℝ) :
interior (complex.im ⁻¹' s) = complex.im ⁻¹' interior s
theorem
complex.closure_preimage_re
(s : set ℝ) :
closure (complex.re ⁻¹' s) = complex.re ⁻¹' closure s
theorem
complex.closure_preimage_im
(s : set ℝ) :
closure (complex.im ⁻¹' s) = complex.im ⁻¹' closure s
theorem
complex.frontier_preimage_re
(s : set ℝ) :
frontier (complex.re ⁻¹' s) = complex.re ⁻¹' frontier s
theorem
complex.frontier_preimage_im
(s : set ℝ) :
frontier (complex.im ⁻¹' s) = complex.im ⁻¹' frontier s
theorem
metric.bounded.re_prod_im
{s t : set ℝ}
(hs : metric.bounded s)
(ht : metric.bounded t) :
metric.bounded (s ×ℂ t)