mathlib documentation

category_theory.limits.exact_functor

Bundled exact functors #

We say that a functor F is left exact if it preserves finite limits, it is right exact if it preserves finite colimits, and it is exact if it is both left exact and right exact.

In this file, we define the categories of bundled left exact, right exact and exact functors.

@[nolint]
def category_theory.LeftExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled left-exact functors.

Equations
Instances for category_theory.LeftExactFunctor
@[nolint]
def category_theory.RightExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled right-exact functors.

Equations
Instances for category_theory.RightExactFunctor
@[protected, instance]
@[nolint]
def category_theory.ExactFunctor (C : Type u₁) [category_theory.category C] (D : Type u₂) [category_theory.category D] :
Type (max v₁ v₂ u₁ u₂)

Bundled exact functors.

Equations
Instances for category_theory.ExactFunctor

Turn an exact functor into a left exact functor.

Equations
Instances for category_theory.LeftExactFunctor.of_exact

Turn an exact functor into a left exact functor.

Equations
Instances for category_theory.RightExactFunctor.of_exact
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem category_theory.ExactFunctor.forget_map {C : Type u₁} [category_theory.category C] {D : Type u₂} [category_theory.category D] {F G : C ⥤ₑ D} (α : F G) :

Turn a left exact functor into an object of the category LeftExactFunctor C D.

Equations

Turn a right exact functor into an object of the category RightExactFunctor C D.

Equations

Turn an exact functor into an object of the category ExactFunctor C D.

Equations