Cardinality of algebraic numbers #
In this file, we prove variants of the following result: the cardinality of algebraic numbers under
an R-algebra is at most # polynomial R * ℵ₀
.
Although this can be used to prove that real or complex transcendental numbers exist, a more direct
proof is given by liouville.is_transcendental
.
theorem
algebraic.aleph_0_le_cardinal_mk_of_char_zero
(R : Type u_1)
(A : Type u_2)
[comm_ring R]
[is_domain R]
[ring A]
[algebra R A]
[char_zero A] :
cardinal.aleph_0 ≤ cardinal.mk {x // is_algebraic R x}
theorem
algebraic.cardinal_mk_lift_le_mul
(R : Type u)
(A : Type v)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A] :
(cardinal.mk {x // is_algebraic R x}).lift ≤ (cardinal.mk (polynomial R)).lift * cardinal.aleph_0
theorem
algebraic.cardinal_mk_lift_le_max
(R : Type u)
(A : Type v)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A] :
(cardinal.mk {x // is_algebraic R x}).lift ≤ linear_order.max (cardinal.mk R).lift cardinal.aleph_0
theorem
algebraic.cardinal_mk_lift_le_of_infinite
(R : Type u)
(A : Type v)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A]
[infinite R] :
(cardinal.mk {x // is_algebraic R x}).lift ≤ (cardinal.mk R).lift
@[simp]
theorem
algebraic.countable_of_encodable
(R : Type u)
(A : Type v)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A]
[encodable R] :
{x : A | is_algebraic R x}.countable
@[simp]
theorem
algebraic.cardinal_mk_of_encodable_of_char_zero
(R : Type u)
(A : Type v)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A]
[encodable R]
[char_zero A]
[is_domain R] :
cardinal.mk {x // is_algebraic R x} = cardinal.aleph_0
theorem
algebraic.cardinal_mk_le_mul
(R A : Type u)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A] :
cardinal.mk {x // is_algebraic R x} ≤ cardinal.mk (polynomial R) * cardinal.aleph_0
theorem
algebraic.cardinal_mk_le_max
(R A : Type u)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A] :
cardinal.mk {x // is_algebraic R x} ≤ linear_order.max (cardinal.mk R) cardinal.aleph_0
theorem
algebraic.cardinal_mk_le_of_infinite
(R A : Type u)
[comm_ring R]
[comm_ring A]
[is_domain A]
[algebra R A]
[no_zero_smul_divisors R A]
[infinite R] :
cardinal.mk {x // is_algebraic R x} ≤ cardinal.mk R