The category of commutative additive groups has images. #
Note that we don't need to register any of the constructions here as instances, because we get them
from the fact that AddCommGroup
is an abelian category.
the image of a morphism in AddCommGroup is just the bundling of add_monoid_hom.range f
Equations
the inclusion of image f
into the target
Equations
Instances for AddCommGroup.image.ι
@[protected, instance]
the corestriction map to the image
Equations
noncomputable
def
AddCommGroup.image.lift
{G H : AddCommGroup}
{f : G ⟶ H}
(F' : category_theory.limits.mono_factorisation f) :
AddCommGroup.image f ⟶ F'.I
the universal property for the image factorisation
theorem
AddCommGroup.image.lift_fac
{G H : AddCommGroup}
{f : G ⟶ H}
(F' : category_theory.limits.mono_factorisation f) :
AddCommGroup.image.lift F' ≫ F'.m = AddCommGroup.image.ι f
the factorisation of any morphism in AddCommGroup through a mono.
Equations
- AddCommGroup.mono_factorisation f = {I := AddCommGroup.image f, m := AddCommGroup.image.ι f, m_mono := _, e := AddCommGroup.factor_thru_image f, fac' := _}
the factorisation of any morphism in AddCommGroup through a mono has the universal property of the image.
Equations
- AddCommGroup.is_image f = {lift := AddCommGroup.image.lift f, lift_fac' := _}
The categorical image of a morphism in AddCommGroup
agrees with the usual group-theoretical range.