Characters of Lie algebras #
A character of a Lie algebra L
over a commutative ring R
is a morphism of Lie algebras L → R
,
where R
is regarded as a Lie algebra over itself via the ring commutator. For an Abelian Lie
algebra (e.g., a Cartan subalgebra of a semisimple Lie algebra) a character is just a linear form.
Main definitions #
Tags #
lie algebra, lie character
@[reducible]
def
lie_algebra.lie_character
(R : Type u)
(L : Type v)
[comm_ring R]
[lie_ring L]
[lie_algebra R L] :
Type (max v u)
A character of a Lie algebra is a morphism to the scalars.
@[simp]
theorem
lie_algebra.lie_character_apply_lie
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
(χ : lie_algebra.lie_character R L)
(x y : L) :
theorem
lie_algebra.lie_character_apply_of_mem_derived
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
(χ : lie_algebra.lie_character R L)
{x : L}
(h : x ∈ lie_algebra.derived_series R L 1) :
@[simp]
theorem
lie_algebra.lie_character_equiv_linear_dual_symm_apply_to_linear_map_apply
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
[is_lie_abelian L]
(ψ : module.dual R L)
(ᾰ : L) :
⇑((⇑(lie_algebra.lie_character_equiv_linear_dual.symm) ψ).to_linear_map) ᾰ = ψ.to_fun ᾰ
@[simp]
theorem
lie_algebra.lie_character_equiv_linear_dual_symm_apply_apply
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
[is_lie_abelian L]
(ψ : module.dual R L)
(ᾰ : L) :
def
lie_algebra.lie_character_equiv_linear_dual
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
[is_lie_abelian L] :
lie_algebra.lie_character R L ≃ module.dual R L
For an Abelian Lie algebra, characters are just linear forms.
Equations
- lie_algebra.lie_character_equiv_linear_dual = {to_fun := λ (χ : lie_algebra.lie_character R L), ↑χ, inv_fun := λ (ψ : module.dual R L), {to_linear_map := {to_fun := ψ.to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, left_inv := _, right_inv := _}
@[simp]
theorem
lie_algebra.lie_character_equiv_linear_dual_apply
{R : Type u}
{L : Type v}
[comm_ring R]
[lie_ring L]
[lie_algebra R L]
[is_lie_abelian L]
(χ : lie_algebra.lie_character R L) :