Power basis for algebra.adjoin R {x} #
This file defines the canonical power basis on algebra.adjoin R {x},
where x is an integral element over R.
The elements 1, x, ..., x ^ (d - 1) for a basis for the K-module K[x],
where d is the degree of the minimal polynomial of x.
Equations
The power basis 1, x, ..., x ^ (d - 1) for K[x],
where d is the degree of the minimal polynomial of x. See algebra.adjoin.power_basis' for
a version over a more general base ring.
Equations
- algebra.adjoin.power_basis hx = {gen := ⟨x, _⟩, dim := (minpoly K x).nat_degree, basis := algebra.adjoin.power_basis_aux hx, basis_eq_pow := _}
The power basis given by x if B.gen ∈ adjoin K {x}. See power_basis.of_gen_mem_adjoin'
for a version over a more general base ring.
Equations
- B.of_gen_mem_adjoin hint hx = (algebra.adjoin.power_basis hint).map (((algebra.adjoin K {x}).equiv_of_eq ⊤ _).trans subalgebra.top_equiv)
If B : power_basis S A is such that is_integral R B.gen, then
is_integral R (B.basis.repr (B.gen ^ n) i) for all i if
minpoly S B.gen = (minpoly R B.gen).map (algebra_map R S). This is the case if R is a GCD domain
and S is its fraction ring.
Let B : power_basis S A be such that is_integral R B.gen, and let x y : A be elements with
integral coordinates in the base B.basis. Then is_integral R ((B.basis.repr (x * y) i) for all
i if minpoly S B.gen = (minpoly R B.gen).map (algebra_map R S). This is the case if R is a GCD
domain and S is its fraction ring.
Let B : power_basis S A be such that is_integral R B.gen, and let x : A be and element
with integral coordinates in the base B.basis. Then is_integral R ((B.basis.repr (x ^ n) i) for
all i and all n if minpoly S B.gen = (minpoly R B.gen).map (algebra_map R S). This is the case
if R is a GCD domain and S is its fraction ring.
Let B B' : power_basis K S be such that is_integral R B.gen, and let P : R[X] be such that
aeval B.gen P = B'.gen. Then is_integral R (B.basis.to_matrix B'.basis i j) for all i and j
if minpoly K B.gen = (minpoly R B.gen).map (algebra_map R L). This is the case
if R is a GCD domain and K is its fraction ring.