The category of schemes #
A scheme is a locally ringed space such that every point is contained in some open set
where there is an isomorphism of presheaves between the restriction to that open set,
and the structure sheaf of Spec R
, for some commutative ring R
.
A morphism of schemes is just a morphism of the underlying locally ringed spaces.
- to_LocallyRingedSpace : algebraic_geometry.LocallyRingedSpace
- local_affine : ∀ (x : ↥(self.to_LocallyRingedSpace)), ∃ (U : topological_space.open_nhds x) (R : CommRing), nonempty (self.to_LocallyRingedSpace.restrict _ ≅ algebraic_geometry.Spec.to_LocallyRingedSpace.obj (opposite.op R))
We define Scheme
as a X : LocallyRingedSpace
,
along with a proof that every point has an open neighbourhood U
so that that the restriction of X
to U
is isomorphic,
as a locally ringed space, to Spec.to_LocallyRingedSpace.obj (op R)
for some R : CommRing
.
Instances for algebraic_geometry.Scheme
- algebraic_geometry.Scheme.has_sizeof_inst
- algebraic_geometry.Scheme.category_theory.category
- algebraic_geometry.Scheme.has_emptyc
- algebraic_geometry.Scheme.inhabited
- algebraic_geometry.Scheme.pullback.algebraic_geometry.Scheme.category_theory.limits.has_pullbacks
- algebraic_geometry.Scheme.category_theory.limits.has_terminal
- algebraic_geometry.Scheme.category_theory.limits.has_finite_limits
- algebraic_geometry.Scheme.category_theory.limits.has_initial
- algebraic_geometry.Scheme.category_theory.limits.has_strict_initial_objects
A morphism between schemes is a morphism between the underlying locally ringed spaces.
Equations
- X.hom Y = (X.to_LocallyRingedSpace ⟶ Y.to_LocallyRingedSpace)
Schemes are a full subcategory of locally ringed spaces.
Equations
- algebraic_geometry.Scheme.category_theory.category = {to_category_struct := {to_quiver := {hom := algebraic_geometry.Scheme.hom}, id := 𝟙, comp := category_theory.category_struct.comp category_theory.category.to_category_struct}, id_comp' := algebraic_geometry.Scheme.category_theory.category._proof_1, comp_id' := algebraic_geometry.Scheme.category_theory.category._proof_2, assoc' := algebraic_geometry.Scheme.category_theory.category._proof_3}
The structure sheaf of a Scheme.
The forgetful functor from Scheme
to LocallyRingedSpace
.
Equations
Instances for algebraic_geometry.Scheme.forget_to_LocallyRingedSpace
- algebraic_geometry.Scheme.forget_to_LocallyRingedSpace.full
- algebraic_geometry.Scheme.forget_to_LocallyRingedSpace.faithful
- algebraic_geometry.is_open_immersion.forget_creates_pullback_of_left
- algebraic_geometry.is_open_immersion.forget_creates_pullback_of_right
- algebraic_geometry.is_open_immersion.forget_preserves_of_left
- algebraic_geometry.is_open_immersion.forget_preserves_of_right
- algebraic_geometry.Scheme.glue_data.algebraic_geometry.Scheme.forget_to_LocallyRingedSpace.category_theory.creates_colimit
The forgetful functor from Scheme
to Top
.
Equations
Instances for algebraic_geometry.Scheme.forget_to_Top
The spectrum of a commutative ring, as a scheme.
The induced map of a ring homomorphism on the ring spectra, as a morphism of schemes.
The spectrum, as a contravariant functor from commutative rings to schemes.
Equations
- algebraic_geometry.Scheme.Spec = {obj := λ (R : CommRingᵒᵖ), algebraic_geometry.Scheme.Spec_obj (opposite.unop R), map := λ (R S : CommRingᵒᵖ) (f : R ⟶ S), algebraic_geometry.Scheme.Spec_map f.unop, map_id' := algebraic_geometry.Scheme.Spec._proof_1, map_comp' := algebraic_geometry.Scheme.Spec._proof_2}
The empty scheme.
Equations
- algebraic_geometry.Scheme.empty = {to_LocallyRingedSpace := {to_SheafedSpace := {to_PresheafedSpace := {carrier := Top.of pempty pempty.topological_space, presheaf := (category_theory.functor.const (topological_space.opens ↥(Top.of pempty))ᵒᵖ).obj (CommRing.of punit)}, is_sheaf := algebraic_geometry.Scheme.empty._proof_2}, local_ring := algebraic_geometry.Scheme.empty._proof_3}, local_affine := algebraic_geometry.Scheme.empty._proof_4}
Equations
The global sections, notated Gamma.
The subset of the underlying space where the given section does not vanish.