Quotients of Lie algebras and Lie modules #
Given a Lie submodule of a Lie module, the quotient carries a natural Lie module structure. In the special case that the Lie module is the Lie algebra itself via the adjoint action, the submodule is a Lie ideal and the quotient carries a natural Lie algebra structure.
We define these quotient structures here. A notable omission at the time of writing (February 2021) is a statement and proof of the universal property of these quotients.
Main definitions #
Tags #
lie algebra, quotient
The quotient of a Lie module by a Lie submodule. It is a Lie module.
Equations
- lie_submodule.has_quotient = {quotient' := λ (N : lie_submodule R L M), M ⧸ N.to_submodule}
Equations
Map sending an element of M to the corresponding element of M/N, when N is a
lie_submodule of the lie_module N.
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there
is a natural linear map from L to the endomorphisms of M leaving N invariant.
Equations
- lie_submodule.quotient.lie_submodule_invariant = linear_map.cod_restrict (N.to_submodule.compatible_maps N.to_submodule) ↑(lie_module.to_endomorphism R L M) lie_submodule.quotient.lie_submodule_invariant._proof_3
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there
is a natural Lie algebra morphism from L to the linear endomorphism of the quotient M/N.
Equations
- lie_submodule.quotient.action_as_endo_map N = {to_linear_map := {to_fun := ((↑N.mapq_linear ↑N).comp lie_submodule.quotient.lie_submodule_invariant).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there is
a natural bracket action of L on the quotient M/N.
Equations
- lie_submodule.quotient.action_as_endo_map_bracket N = {bracket := λ (x : L) (n : M ⧸ N), ⇑(⇑(lie_submodule.quotient.action_as_endo_map N) x) n}
Equations
The quotient of a Lie module by a Lie submodule, is a Lie module.
Equations
- lie_submodule.quotient.lie_quotient_has_bracket = {bracket := λ (x y : L ⧸ I), quotient.lift_on₂' x y (λ (x' y' : L), lie_submodule.quotient.mk ⁅x',y'⁆) lie_submodule.quotient.lie_quotient_has_bracket._proof_1}
Equations
Equations
lie_submodule.quotient.mk as a lie_module_hom.
Equations
- lie_submodule.quotient.mk' N = {to_linear_map := {to_fun := lie_submodule.quotient.mk N, map_add' := _, map_smul' := _}, map_lie' := _}
Two lie_module_homs from a quotient lie module are equal if their compositions with
lie_submodule.quotient.mk' are equal.
The first isomorphism theorem for morphisms of Lie algebras.
Equations
- f.quot_ker_equiv_range = {to_lie_hom := {to_linear_map := {to_fun := ⇑(↑f.quot_ker_equiv_range), map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := ↑f.quot_ker_equiv_range.inv_fun, left_inv := _, right_inv := _}