Associator for binary disjoint union of categories. #
The associator functor ((C ⊕ D) ⊕ E) ⥤ (C ⊕ (D ⊕ E))
and its inverse form an equivalence.
def
category_theory.sum.associator
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E] :
The associator functor (C ⊕ D) ⊕ E ⥤ C ⊕ (D ⊕ E)
for sums of categories.
Equations
- category_theory.sum.associator C D E = {obj := λ (X : (C ⊕ D) ⊕ E), category_theory.sum.associator._match_1 C D E X, map := λ (X Y : (C ⊕ D) ⊕ E) (f : X ⟶ Y), category_theory.sum.associator._match_2 C D E X Y f, map_id' := _, map_comp' := _}
- category_theory.sum.associator._match_1 C D E (sum.inr X) = sum.inr (sum.inr X)
- category_theory.sum.associator._match_1 C D E (sum.inl (sum.inr X)) = sum.inr (sum.inl X)
- category_theory.sum.associator._match_1 C D E (sum.inl (sum.inl X)) = sum.inl X
- category_theory.sum.associator._match_2 C D E (sum.inr X) (sum.inr Y) f = f
- category_theory.sum.associator._match_2 C D E (sum.inl (sum.inr X)) (sum.inl (sum.inr Y)) f = f
- category_theory.sum.associator._match_2 C D E (sum.inl (sum.inl X)) (sum.inl (sum.inl Y)) f = f
Instances for category_theory.sum.associator
@[simp]
theorem
category_theory.sum.associator_obj_inl_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : C) :
@[simp]
theorem
category_theory.sum.associator_obj_inl_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : D) :
@[simp]
theorem
category_theory.sum.associator_obj_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : E) :
@[simp]
theorem
category_theory.sum.associator_map_inl_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : C}
(f : sum.inl (sum.inl X) ⟶ sum.inl (sum.inl Y)) :
(category_theory.sum.associator C D E).map f = f
@[simp]
theorem
category_theory.sum.associator_map_inl_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : D}
(f : sum.inl (sum.inr X) ⟶ sum.inl (sum.inr Y)) :
(category_theory.sum.associator C D E).map f = f
@[simp]
theorem
category_theory.sum.associator_map_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : E}
(f : sum.inr X ⟶ sum.inr Y) :
(category_theory.sum.associator C D E).map f = f
def
category_theory.sum.inverse_associator
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E] :
The inverse associator functor C ⊕ (D ⊕ E) ⥤ (C ⊕ D) ⊕ E
for sums of categories.
Equations
- category_theory.sum.inverse_associator C D E = {obj := λ (X : C ⊕ D ⊕ E), category_theory.sum.inverse_associator._match_1 C D E X, map := λ (X Y : C ⊕ D ⊕ E) (f : X ⟶ Y), category_theory.sum.inverse_associator._match_2 C D E X Y f, map_id' := _, map_comp' := _}
- category_theory.sum.inverse_associator._match_1 C D E (sum.inr (sum.inr X)) = sum.inr X
- category_theory.sum.inverse_associator._match_1 C D E (sum.inr (sum.inl X)) = sum.inl (sum.inr X)
- category_theory.sum.inverse_associator._match_1 C D E (sum.inl X) = sum.inl (sum.inl X)
- category_theory.sum.inverse_associator._match_2 C D E (sum.inr (sum.inr X)) (sum.inr (sum.inr Y)) f = f
- category_theory.sum.inverse_associator._match_2 C D E (sum.inr (sum.inl X)) (sum.inr (sum.inl Y)) f = f
- category_theory.sum.inverse_associator._match_2 C D E (sum.inl X) (sum.inl Y) f = f
Instances for category_theory.sum.inverse_associator
@[simp]
theorem
category_theory.sum.inverse_associator_obj_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : C) :
@[simp]
theorem
category_theory.sum.inverse_associator_obj_inr_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : D) :
@[simp]
theorem
category_theory.sum.inverse_associator_obj_inr_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
(X : E) :
@[simp]
theorem
category_theory.sum.inverse_associator_map_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : C}
(f : sum.inl X ⟶ sum.inl Y) :
(category_theory.sum.inverse_associator C D E).map f = f
@[simp]
theorem
category_theory.sum.inverse_associator_map_inr_inl
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : D}
(f : sum.inr (sum.inl X) ⟶ sum.inr (sum.inl Y)) :
(category_theory.sum.inverse_associator C D E).map f = f
@[simp]
theorem
category_theory.sum.inverse_associator_map_inr_inr
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E]
{X Y : E}
(f : sum.inr (sum.inr X) ⟶ sum.inr (sum.inr Y)) :
(category_theory.sum.inverse_associator C D E).map f = f
def
category_theory.sum.associativity
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E] :
The equivalence of categories expressing associativity of sums of categories.
Equations
- category_theory.sum.associativity C D E = category_theory.equivalence.mk (category_theory.sum.associator C D E) (category_theory.sum.inverse_associator C D E) (category_theory.nat_iso.of_components (λ (X : (C ⊕ D) ⊕ E), category_theory.eq_to_iso _) _) (category_theory.nat_iso.of_components (λ (X : C ⊕ D ⊕ E), category_theory.eq_to_iso _) _)
@[protected, instance]
def
category_theory.sum.associator_is_equivalence
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E] :
@[protected, instance]
def
category_theory.sum.inverse_associator_is_equivalence
(C : Type u)
[category_theory.category C]
(D : Type u)
[category_theory.category D]
(E : Type u)
[category_theory.category E] :