The category of finite partial orders #
This defines FinPartialOrder
, the category of finite partial orders.
Note: FinPartialOrder
is NOT a subcategory of BoundedOrder
because its morphisms do not
preserve ⊥
and ⊤
.
TODO #
FinPartialOrder
is equivalent to a small category.
- to_PartialOrder : PartialOrder
- is_fintype : fintype ↥(self.to_PartialOrder)
The category of finite partial orders with monotone functions.
Instances for FinPartialOrder
@[protected, instance]
Equations
- FinPartialOrder.has_coe_to_sort = {coe := λ (X : FinPartialOrder), ↥(X.to_PartialOrder)}
@[protected, instance]
Equations
@[simp]
Construct a bundled FinPartialOrder
from fintype
+ partial_order
.
Equations
- FinPartialOrder.of α = FinPartialOrder.mk {α := α, str := _inst_1}
@[simp]
theorem
FinPartialOrder.coe_of
(α : Type u_1)
[partial_order α]
[fintype α] :
↥(FinPartialOrder.of α) = α
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
Equations
- FinPartialOrder.has_forget_to_Fintype = {forget₂ := {obj := λ (X : FinPartialOrder), {α := ↥X, str := X.is_fintype}, map := λ (X Y : FinPartialOrder), coe_fn, map_id' := FinPartialOrder.has_forget_to_Fintype._proof_1, map_comp' := FinPartialOrder.has_forget_to_Fintype._proof_2}, forget_comp := FinPartialOrder.has_forget_to_Fintype._proof_3}
@[simp]
theorem
FinPartialOrder.iso.mk_hom
{α β : FinPartialOrder}
(e : ↥α ≃o ↥β) :
(FinPartialOrder.iso.mk e).hom = ↑e
@[simp]
theorem
FinPartialOrder.iso.mk_inv
{α β : FinPartialOrder}
(e : ↥α ≃o ↥β) :
(FinPartialOrder.iso.mk e).inv = ↑(e.symm)
Constructs an isomorphism of finite partial orders from an order isomorphism between them.
Equations
- FinPartialOrder.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
order_dual
as a functor.
Equations
- FinPartialOrder.dual = {obj := λ (X : FinPartialOrder), FinPartialOrder.of (↥X)ᵒᵈ, map := λ (X Y : FinPartialOrder), ⇑order_hom.dual, map_id' := FinPartialOrder.dual._proof_1, map_comp' := FinPartialOrder.dual._proof_2}
@[simp]
theorem
FinPartialOrder.dual_map
(X Y : FinPartialOrder)
(ᾰ : ↥(X.to_PartialOrder) →o ↥(Y.to_PartialOrder)) :
@[simp]
The equivalence between FinPartialOrder
and itself induced by order_dual
both ways.
Equations
- FinPartialOrder.dual_equiv = category_theory.equivalence.mk FinPartialOrder.dual FinPartialOrder.dual (category_theory.nat_iso.of_components (λ (X : FinPartialOrder), FinPartialOrder.iso.mk (order_iso.dual_dual ↥X)) FinPartialOrder.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : FinPartialOrder), FinPartialOrder.iso.mk (order_iso.dual_dual ↥X)) FinPartialOrder.dual_equiv._proof_2)