The category of frames.
Equations
@[protected, instance]
@[protected, instance]
Equations
- Frame.order.frame X = X.str
Construct a bundled Frame
from a frame
.
Equations
@[protected, instance]
Equations
@[reducible]
An abbreviation of frame_hom
that assumes frame
instead of the weaker complete_lattice
.
Necessary for the category theory machinery.
@[protected, instance]
Equations
- Frame.bundled_hom = {to_fun := λ (α β : Type u_1) [_inst_1 : order.frame α] [_inst_2 : order.frame β], coe_fn, id := λ (α : Type u_1) [_inst_1 : order.frame α], frame_hom.id α, comp := λ (α β γ : Type u_1) [_inst_1 : order.frame α] [_inst_2 : order.frame β] [_inst_3 : order.frame γ], frame_hom.comp, hom_ext := Frame.bundled_hom._proof_1, id_to_fun := Frame.bundled_hom._proof_2, comp_to_fun := Frame.bundled_hom._proof_3}
@[protected, instance]
Equations
- Frame.has_forget_to_Lattice = {forget₂ := {obj := λ (X : Frame), {α := ↥X, str := conditionally_complete_lattice.to_lattice ↥X complete_lattice.to_conditionally_complete_lattice}, map := λ (X Y : Frame), frame_hom.to_lattice_hom, map_id' := Frame.has_forget_to_Lattice._proof_1, map_comp' := Frame.has_forget_to_Lattice._proof_2}, forget_comp := Frame.has_forget_to_Lattice._proof_3}
Constructs an isomorphism of frames from an order isomorphism between them.
Equations
- Frame.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
@[simp]
The forgetful functor from Topᵒᵖ
to Frame
.
Equations
- Top_op_to_Frame = {obj := λ (X : Topᵒᵖ), Frame.of (topological_space.opens ↥(opposite.unop X)), map := λ (X Y : Topᵒᵖ) (f : X ⟶ Y), topological_space.opens.comap f.unop, map_id' := Top_op_to_Frame._proof_1, map_comp' := Top_op_to_Frame._proof_2}
@[protected, instance]