mathlib documentation

data.list.min_max

Minimum and maximum of lists #

Main definitions #

The main definitions are argmax, argmin, minimum and maximum for lists.

argmax f l returns some a, where a of l that maximises f a. If there are a b such that f a = f b, it returns whichever of a or b comes first in the list. argmax f [] = none`

minimum l returns an with_top α, the smallest element of l for nonempty lists, and for []

def list.arg_aux {α : Type u_1} (r : α → α → Prop) [decidable_rel r] (a : option α) (b : α) :

Auxiliary definition for argmax and argmin.

Equations
@[simp]
theorem list.foldl_arg_aux_eq_none {α : Type u_1} (r : α → α → Prop) [decidable_rel r] {l : list α} {o : option α} :
@[simp]
theorem list.arg_aux_self {α : Type u_1} (r : α → α → Prop) [decidable_rel r] (hr₀ : irreflexive r) (a : α) :
theorem list.not_of_mem_foldl_arg_aux {α : Type u_1} (r : α → α → Prop) [decidable_rel r] {l : list α} (hr₀ : irreflexive r) (hr₁ : transitive r) {a m : α} {o : option α} :
a lm list.foldl (list.arg_aux r) o l¬r a m
def list.argmax {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) (l : list α) :

argmax f l returns some a, where f a is maximal among the elements of l, in the sense that there is no b ∈ l with f a < f b. If a, b are such that f a = f b, it returns whichever of a or b comes first in the list. argmax f [] = none`.

Equations
def list.argmin {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) (l : list α) :

argmin f l returns some a, where f a is minimal among the elements of l, in the sense that there is no b ∈ l with f b < f a. If a, b are such that f a = f b, it returns whichever of a or b comes first in the list. argmin f [] = none`.

Equations
@[simp]
theorem list.argmax_nil {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) :
@[simp]
theorem list.argmin_nil {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) :
@[simp]
theorem list.argmax_singleton {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {a : α} :
@[simp]
theorem list.argmin_singleton {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {a : α} :
theorem list.not_lt_of_mem_argmax {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} {a m : α} :
a lm list.argmax f l¬f m < f a
theorem list.not_lt_of_mem_argmin {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} {a m : α} :
a lm list.argmin f l¬f a < f m
theorem list.argmax_concat {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) (a : α) (l : list α) :
list.argmax f (l ++ [a]) = (list.argmax f l).cases_on (option.some a) (λ (c : α), ite (f c < f a) (option.some a) (option.some c))
theorem list.argmin_concat {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] (f : α → β) (a : α) (l : list α) :
list.argmin f (l ++ [a]) = (list.argmin f l).cases_on (option.some a) (λ (c : α), ite (f a < f c) (option.some a) (option.some c))
theorem list.argmax_mem {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} {m : α} :
m list.argmax f lm l
theorem list.argmin_mem {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} {m : α} :
m list.argmin f lm l
@[simp]
theorem list.argmax_eq_none {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} :
@[simp]
theorem list.argmin_eq_none {α : Type u_1} {β : Type u_2} [preorder β] [decidable_rel has_lt.lt] {f : α → β} {l : list α} :
theorem list.le_of_mem_argmax {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {a m : α} :
a lm list.argmax f lf a f m
theorem list.le_of_mem_argmin {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {a m : α} :
a lm list.argmin f lf m f a
theorem list.argmax_cons {α : Type u_1} {β : Type u_2} [linear_order β] (f : α → β) (a : α) (l : list α) :
list.argmax f (a :: l) = (list.argmax f l).cases_on (option.some a) (λ (c : α), ite (f a < f c) (option.some c) (option.some a))
theorem list.argmin_cons {α : Type u_1} {β : Type u_2} [linear_order β] (f : α → β) (a : α) (l : list α) :
list.argmin f (a :: l) = (list.argmin f l).cases_on (option.some a) (λ (c : α), ite (f c < f a) (option.some c) (option.some a))
theorem list.index_of_argmax {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} [decidable_eq α] {l : list α} {m : α} :
m list.argmax f l∀ {a : α}, a lf m f alist.index_of m l list.index_of a l
theorem list.index_of_argmin {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} [decidable_eq α] {l : list α} {m : α} :
m list.argmin f l∀ {a : α}, a lf a f mlist.index_of m l list.index_of a l
theorem list.mem_argmax_iff {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {m : α} [decidable_eq α] :
m list.argmax f l m l (∀ (a : α), a lf a f m) ∀ (a : α), a lf m f alist.index_of m l list.index_of a l
theorem list.argmax_eq_some_iff {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {m : α} [decidable_eq α] :
list.argmax f l = option.some m m l (∀ (a : α), a lf a f m) ∀ (a : α), a lf m f alist.index_of m l list.index_of a l
theorem list.mem_argmin_iff {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {m : α} [decidable_eq α] :
m list.argmin f l m l (∀ (a : α), a lf m f a) ∀ (a : α), a lf a f mlist.index_of m l list.index_of a l
theorem list.argmin_eq_some_iff {α : Type u_1} {β : Type u_2} [linear_order β] {f : α → β} {l : list α} {m : α} [decidable_eq α] :
list.argmin f l = option.some m m l (∀ (a : α), a lf m f a) ∀ (a : α), a lf a f mlist.index_of m l list.index_of a l
def list.maximum {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] (l : list α) :

maximum l returns an with_bot α, the largest element of l for nonempty lists, and for []

Equations
def list.minimum {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] (l : list α) :

minimum l returns an with_top α, the smallest element of l for nonempty lists, and for []

Equations
@[simp]
@[simp]
@[simp]
theorem list.maximum_singleton {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] (a : α) :
@[simp]
theorem list.minimum_singleton {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] (a : α) :
theorem list.maximum_mem {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {m : α} :
l.maximum = mm l
theorem list.minimum_mem {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {m : α} :
l.minimum = mm l
@[simp]
theorem list.maximum_eq_none {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} :
@[simp]
theorem list.minimum_eq_none {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} :
theorem list.not_lt_maximum_of_mem {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {a m : α} :
a ll.maximum = m¬m < a
theorem list.minimum_not_lt_of_mem {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {a m : α} :
a ll.minimum = m¬a < m
theorem list.not_lt_maximum_of_mem' {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {a : α} (ha : a l) :
theorem list.not_lt_minimum_of_mem' {α : Type u_1} [preorder α] [decidable_rel has_lt.lt] {l : list α} {a : α} (ha : a l) :
theorem list.maximum_concat {α : Type u_1} [linear_order α] (a : α) (l : list α) :
theorem list.le_maximum_of_mem {α : Type u_1} [linear_order α] {l : list α} {a m : α} :
a ll.maximum = ma m
theorem list.minimum_le_of_mem {α : Type u_1} [linear_order α] {l : list α} {a m : α} :
a ll.minimum = mm a
theorem list.le_maximum_of_mem' {α : Type u_1} [linear_order α] {l : list α} {a : α} (ha : a l) :
theorem list.le_minimum_of_mem' {α : Type u_1} [linear_order α] {l : list α} {a : α} (ha : a l) :
theorem list.minimum_concat {α : Type u_1} [linear_order α] (a : α) (l : list α) :
theorem list.maximum_cons {α : Type u_1} [linear_order α] (a : α) (l : list α) :
theorem list.minimum_cons {α : Type u_1} [linear_order α] (a : α) (l : list α) :
theorem list.maximum_eq_coe_iff {α : Type u_1} [linear_order α] {l : list α} {m : α} :
l.maximum = m m l ∀ (a : α), a la m
theorem list.minimum_eq_coe_iff {α : Type u_1} [linear_order α] {l : list α} {m : α} :
l.minimum = m m l ∀ (a : α), a lm a
@[simp]
theorem list.foldr_max_of_ne_nil {α : Type u_1} [linear_order α] [order_bot α] {l : list α} (h : l list.nil) :
theorem list.max_le_of_forall_le {α : Type u_1} [linear_order α] [order_bot α] (l : list α) (a : α) (h : ∀ (x : α), x lx a) :
theorem list.le_max_of_le {α : Type u_1} [linear_order α] [order_bot α] {l : list α} {a x : α} (hx : x l) (h : a x) :
@[simp]
theorem list.foldr_min_of_ne_nil {α : Type u_1} [linear_order α] [order_top α] {l : list α} (h : l list.nil) :
theorem list.le_min_of_forall_le {α : Type u_1} [linear_order α] [order_top α] (l : list α) (a : α) (h : ∀ (x : α), x la x) :
theorem list.min_le_of_le {α : Type u_1} [linear_order α] [order_top α] (l : list α) (a : α) {x : α} (hx : x l) (h : x a) :