Category of partial orders #
This defines PartialOrder
, the category of partial orders with monotone maps.
The category of partially ordered types.
Equations
Instances for PartialOrder
- PartialOrder.large_category
- PartialOrder.concrete_category
- PartialOrder.has_coe_to_sort
- PartialOrder.inhabited
- PartialOrder.has_forget_to_Preorder
- BoundedOrder.has_forget_to_PartialOrder
- Lattice.has_forget_to_PartialOrder
- SemilatticeSup.has_forget_to_PartialOrder
- SemilatticeInf.has_forget_to_PartialOrder
- FinPartialOrder.has_forget_to_PartialOrder
@[protected, instance]
Equations
- PartialOrder.partial_order.to_preorder.category_theory.bundled_hom.parent_projection = category_theory.bundled_hom.parent_projection.mk
@[protected, instance]
@[protected, instance]
@[protected, instance]
Construct a bundled PartialOrder from the underlying type and typeclass.
Equations
@[simp]
@[protected, instance]
Equations
@[protected, instance]
Equations
- α.partial_order = α.str
@[simp]
theorem
PartialOrder.iso.mk_hom
{α β : PartialOrder}
(e : ↥α ≃o ↥β) :
(PartialOrder.iso.mk e).hom = ↑e
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
- PartialOrder.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
PartialOrder.iso.mk_inv
{α β : PartialOrder}
(e : ↥α ≃o ↥β) :
(PartialOrder.iso.mk e).inv = ↑(e.symm)
order_dual
as a functor.
Equations
- PartialOrder.dual = {obj := λ (X : PartialOrder), PartialOrder.of (↥X)ᵒᵈ, map := λ (X Y : PartialOrder), ⇑order_hom.dual, map_id' := PartialOrder.dual._proof_1, map_comp' := PartialOrder.dual._proof_2}
@[simp]
@[simp]
@[simp]
The equivalence between PartialOrder
and itself induced by order_dual
both ways.
Equations
- PartialOrder.dual_equiv = category_theory.equivalence.mk PartialOrder.dual PartialOrder.dual (category_theory.nat_iso.of_components (λ (X : PartialOrder), PartialOrder.iso.mk (order_iso.dual_dual ↥X)) PartialOrder.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : PartialOrder), PartialOrder.iso.mk (order_iso.dual_dual ↥X)) PartialOrder.dual_equiv._proof_2)
@[simp]
antisymmetrization
as a functor. It is the free functor.
Equations
- Preorder_to_PartialOrder = {obj := λ (X : Preorder), PartialOrder.of (antisymmetrization ↥X has_le.le), map := λ (X Y : Preorder) (f : X ⟶ Y), order_hom.antisymmetrization f, map_id' := Preorder_to_PartialOrder._proof_2, map_comp' := Preorder_to_PartialOrder._proof_3}
Preorder_to_PartialOrder
is left adjoint to the forgetful functor, meaning it is the free
functor from Preorder
to PartialOrder
.
Equations
- Preorder_to_PartialOrder_forget_adjunction = category_theory.adjunction.mk_of_hom_equiv {hom_equiv := λ (X : Preorder) (Y : PartialOrder), {to_fun := λ (f : Preorder_to_PartialOrder.obj X ⟶ Y), {to_fun := ⇑f ∘ to_antisymmetrization has_le.le, monotone' := _}, inv_fun := λ (f : X ⟶ (category_theory.forget₂ PartialOrder Preorder).obj Y), {to_fun := λ (a : ↥(Preorder_to_PartialOrder.obj X)), quotient.lift_on' a ⇑f _, monotone' := _}, left_inv := _, right_inv := _}, hom_equiv_naturality_left_symm' := Preorder_to_PartialOrder_forget_adjunction._proof_6, hom_equiv_naturality_right' := Preorder_to_PartialOrder_forget_adjunction._proof_7}
Preorder_to_PartialOrder
and order_dual
commute.
Equations
- Preorder_to_PartialOrder_comp_to_dual_iso_to_dual_comp_Preorder_to_PartialOrder = category_theory.nat_iso.of_components (λ (X : Preorder), PartialOrder.iso.mk (order_iso.dual_antisymmetrization ↥X)) Preorder_to_PartialOrder_comp_to_dual_iso_to_dual_comp_Preorder_to_PartialOrder._proof_1
@[simp]
@[simp]