The pointwise product on finsupp
. #
For the convolution product on finsupp
when the domain has a binary operation,
see the type synonyms add_monoid_algebra
(which is in turn used to define polynomial
and mv_polynomial
)
and monoid_algebra
.
@[protected, instance]
The product of f g : α →₀ β
is the finitely supported function
whose value at a
is f a * g a
.
Equations
- finsupp.has_mul = {mul := finsupp.zip_with has_mul.mul finsupp.has_mul._proof_1}
@[simp]
theorem
finsupp.support_mul
{α : Type u₁}
{β : Type u₂}
[mul_zero_class β]
[decidable_eq α]
{g₁ g₂ : α →₀ β} :
@[protected, instance]
noncomputable
def
finsupp.mul_zero_class
{α : Type u₁}
{β : Type u₂}
[mul_zero_class β] :
mul_zero_class (α →₀ β)
Equations
- finsupp.mul_zero_class = function.injective.mul_zero_class coe_fn finsupp.mul_zero_class._proof_1 finsupp.mul_zero_class._proof_2 finsupp.coe_mul
@[protected, instance]
noncomputable
def
finsupp.semigroup_with_zero
{α : Type u₁}
{β : Type u₂}
[semigroup_with_zero β] :
semigroup_with_zero (α →₀ β)
Equations
- finsupp.semigroup_with_zero = function.injective.semigroup_with_zero coe_fn finsupp.semigroup_with_zero._proof_1 finsupp.semigroup_with_zero._proof_2 finsupp.semigroup_with_zero._proof_3
@[protected, instance]
noncomputable
def
finsupp.non_unital_non_assoc_semiring
{α : Type u₁}
{β : Type u₂}
[non_unital_non_assoc_semiring β] :
Equations
- finsupp.non_unital_non_assoc_semiring = function.injective.non_unital_non_assoc_semiring coe_fn finsupp.non_unital_non_assoc_semiring._proof_1 finsupp.non_unital_non_assoc_semiring._proof_2 finsupp.non_unital_non_assoc_semiring._proof_3 finsupp.non_unital_non_assoc_semiring._proof_4 finsupp.non_unital_non_assoc_semiring._proof_5
@[protected, instance]
noncomputable
def
finsupp.non_unital_semiring
{α : Type u₁}
{β : Type u₂}
[non_unital_semiring β] :
non_unital_semiring (α →₀ β)
Equations
- finsupp.non_unital_semiring = function.injective.non_unital_semiring coe_fn finsupp.non_unital_semiring._proof_1 finsupp.non_unital_semiring._proof_2 finsupp.non_unital_semiring._proof_3 finsupp.non_unital_semiring._proof_4 finsupp.non_unital_semiring._proof_5
@[protected, instance]
noncomputable
def
finsupp.non_unital_comm_semiring
{α : Type u₁}
{β : Type u₂}
[non_unital_comm_semiring β] :
non_unital_comm_semiring (α →₀ β)
Equations
- finsupp.non_unital_comm_semiring = function.injective.non_unital_comm_semiring coe_fn finsupp.non_unital_comm_semiring._proof_1 finsupp.non_unital_comm_semiring._proof_2 finsupp.non_unital_comm_semiring._proof_3 finsupp.non_unital_comm_semiring._proof_4 finsupp.non_unital_comm_semiring._proof_5
@[protected, instance]
noncomputable
def
finsupp.non_unital_non_assoc_ring
{α : Type u₁}
{β : Type u₂}
[non_unital_non_assoc_ring β] :
non_unital_non_assoc_ring (α →₀ β)
Equations
- finsupp.non_unital_non_assoc_ring = function.injective.non_unital_non_assoc_ring coe_fn finsupp.non_unital_non_assoc_ring._proof_1 finsupp.non_unital_non_assoc_ring._proof_2 finsupp.non_unital_non_assoc_ring._proof_3 finsupp.non_unital_non_assoc_ring._proof_4 finsupp.non_unital_non_assoc_ring._proof_5 finsupp.non_unital_non_assoc_ring._proof_6 finsupp.non_unital_non_assoc_ring._proof_7 finsupp.non_unital_non_assoc_ring._proof_8
@[protected, instance]
noncomputable
def
finsupp.non_unital_ring
{α : Type u₁}
{β : Type u₂}
[non_unital_ring β] :
non_unital_ring (α →₀ β)
Equations
- finsupp.non_unital_ring = function.injective.non_unital_ring coe_fn finsupp.non_unital_ring._proof_1 finsupp.non_unital_ring._proof_2 finsupp.non_unital_ring._proof_3 finsupp.non_unital_ring._proof_4 finsupp.non_unital_ring._proof_5 finsupp.non_unital_ring._proof_6 finsupp.non_unital_ring._proof_7 finsupp.non_unital_ring._proof_8
@[protected, instance]
noncomputable
def
finsupp.non_unital_comm_ring
{α : Type u₁}
{β : Type u₂}
[non_unital_comm_ring β] :
non_unital_comm_ring (α →₀ β)
Equations
- finsupp.non_unital_comm_ring = function.injective.non_unital_comm_ring coe_fn finsupp.non_unital_comm_ring._proof_1 finsupp.non_unital_comm_ring._proof_2 finsupp.non_unital_comm_ring._proof_3 finsupp.non_unital_comm_ring._proof_4 finsupp.non_unital_comm_ring._proof_5 finsupp.non_unital_comm_ring._proof_6 finsupp.non_unital_comm_ring._proof_7 finsupp.non_unital_comm_ring._proof_8
@[protected, instance]
Equations
- finsupp.pointwise_scalar = {smul := λ (f : α → β) (g : α →₀ β), finsupp.of_support_finite (λ (a : α), f a • ⇑g a) _}
@[protected, instance]
The pointwise multiplicative action of functions on finitely supported functions
Equations
- finsupp.pointwise_module = function.injective.module (α → β) finsupp.coe_fn_add_hom finsupp.pointwise_module._proof_1 finsupp.coe_pointwise_smul