r-sets and slice #
This file defines the r-th slice of a set family and provides a way to say that a set family is
made of r-sets.
An r-set is a finset of cardinality r (aka of size r). The r-th slice of a set family is
the set family made of its r-sets.
Main declarations #
set.sized:A.sized rmeans thatAonly containsr-sets.finset.slice:A.slice ris the set ofr-sets inA.
Notation #
A # r is notation for A.slice r in locale finset_family.
Families of r-sets #
@[protected]
@[protected]
theorem
set.sized.subsingleton'
{α : Type u_1}
{A : set (finset α)}
[fintype α]
(hA : set.sized (fintype.card α) A) :
theorem
set.sized.univ_mem_iff
{α : Type u_1}
{A : set (finset α)}
{r : ℕ}
[fintype α]
(hA : set.sized r A) :
finset.univ ∈ A ↔ A = {finset.univ}
theorem
set.sized_powerset_len
{α : Type u_1}
(s : finset α)
(r : ℕ) :
set.sized r ↑(finset.powerset_len r s)
theorem
finset.subset_powerset_len_univ_iff
{α : Type u_1}
[fintype α]
{𝒜 : finset (finset α)}
{r : ℕ} :
𝒜 ⊆ finset.powerset_len r finset.univ ↔ set.sized r ↑𝒜
theorem
set.sized.subset_powerset_len_univ
{α : Type u_1}
[fintype α]
{𝒜 : finset (finset α)}
{r : ℕ} :
set.sized r ↑𝒜 → 𝒜 ⊆ finset.powerset_len r finset.univ
Alias of the reverse direction of finset.subset_powerset_len_univ_iff.
Slices #
@[simp]
theorem
finset.bUnion_slice
{α : Type u_1}
(𝒜 : finset (finset α))
[fintype α]
[decidable_eq α] :
(finset.Iic (fintype.card α)).bUnion 𝒜.slice = 𝒜
@[simp]
theorem
finset.sum_card_slice
{α : Type u_1}
(𝒜 : finset (finset α))
[fintype α] :
(finset.Iic (fintype.card α)).sum (λ (r : ℕ), (𝒜.slice r).card) = 𝒜.card