Integer power operation on fields and division rings #
This file collects basic facts about the operation of raising an element of a division_ring
to an
integer power. More specialised results are provided in the case of a linearly ordered field.
theorem
zpow_le_of_le
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{m n : ℤ}
(ha : 1 ≤ a)
(h : m ≤ n) :
theorem
pow_le_max_of_min_le
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(hx : 1 ≤ x)
{a b c : ℤ}
(h : linear_order.min a b ≤ c) :
theorem
zpow_le_one_of_nonpos
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : n ≤ 0) :
theorem
one_le_zpow_of_nonneg
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : 0 ≤ n) :
@[protected]
theorem
nat.zpow_pos_of_pos
{α : Type u_1}
[linear_ordered_semifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ) :
theorem
nat.zpow_ne_zero_of_pos
{α : Type u_1}
[linear_ordered_semifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ) :
theorem
zpow_strict_anti
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(h₀ : 0 < x)
(h₁ : x < 1) :
@[simp]
@[simp]
theorem
min_le_of_zpow_le_max
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(hx : 1 < x)
{a b c : ℤ}
(h_max : x ^ -c ≤ linear_order.max (x ^ -a) (x ^ -b)) :
linear_order.min a b ≤ c
@[simp]
theorem
pos_div_pow_pos
{α : Type u_1}
[linear_ordered_semifield α]
{a b : α}
(ha : 0 < a)
(hb : 0 < b)
(k : ℕ) :
@[simp]
theorem
div_pow_le
{α : Type u_1}
[linear_ordered_semifield α]
{a b : α}
(ha : 0 < a)
(hb : 1 ≤ b)
(k : ℕ) :
theorem
zpow_injective
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(h₀ : 0 < x)
(h₁ : x ≠ 1) :
@[simp]
@[simp]
@[simp]
@[simp]