mathlib documentation

analysis.special_functions.gaussian

Gaussian integral #

We prove the formula ∫ x, exp (-b * x^2) = sqrt (π / b), in integral_gaussian.

theorem exp_neg_mul_sq_is_o_exp_neg {b : } (hb : 0 < b) :
(λ (x : ), real.exp (-b * x ^ 2)) =o[filter.at_top] λ (x : ), real.exp (-x)
theorem rpow_mul_exp_neg_mul_sq_is_o_exp_neg {b : } (hb : 0 < b) (s : ) :
(λ (x : ), x ^ s * real.exp (-b * x ^ 2)) =o[filter.at_top] λ (x : ), real.exp (-(1 / 2) * x)
theorem integrable_rpow_mul_exp_neg_mul_sq {b : } (hb : 0 < b) {s : } (hs : -1 < s) :
theorem integral_mul_exp_neg_mul_sq {b : } (hb : 0 < b) :
∫ (r : ) in set.Ioi 0, r * real.exp (-b * r ^ 2) = (2 * b)⁻¹
theorem integral_gaussian (b : ) :
∫ (x : ), real.exp (-b * x ^ 2) = real.sqrt (real.pi / b)