Gaussian integral #
We prove the formula ∫ x, exp (-b * x^2) = sqrt (π / b)
, in integral_gaussian
.
theorem
integrable_rpow_mul_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b)
{s : ℝ}
(hs : -1 < s) :
measure_theory.integrable (λ (x : ℝ), x ^ s * real.exp (-b * x ^ 2)) measure_theory.measure_space.volume
theorem
integrable_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b) :
measure_theory.integrable (λ (x : ℝ), real.exp (-b * x ^ 2)) measure_theory.measure_space.volume
theorem
integrable_exp_neg_mul_sq_iff
{b : ℝ} :
measure_theory.integrable (λ (x : ℝ), real.exp (-b * x ^ 2)) measure_theory.measure_space.volume ↔ 0 < b
theorem
integrable_mul_exp_neg_mul_sq
{b : ℝ}
(hb : 0 < b) :
measure_theory.integrable (λ (x : ℝ), x * real.exp (-b * x ^ 2)) measure_theory.measure_space.volume