Constructions relating polynomial functions and continuous functions. #
Main definitions #
polynomial.to_continuous_map_on p X
: forX : set R
, interprets a polynomialp
as a bundled continuous function inC(X, R)
.polynomial.to_continuous_map_on_alg_hom
: the same, as anR
-algebra homomorphism.polynomial_functions (X : set R) : subalgebra R C(X, R)
: polynomial functions as a subalgebra.polynomial_functions_separates_points (X : set R) : (polynomial_functions X).separates_points
: the polynomial functions separate points.
def
polynomial.to_continuous_map
{R : Type u_1}
[semiring R]
[topological_space R]
[topological_semiring R]
(p : polynomial R) :
Every polynomial with coefficients in a topological semiring gives a (bundled) continuous function.
Equations
- p.to_continuous_map = {to_fun := λ (x : R), polynomial.eval x p, continuous_to_fun := _}
@[simp]
theorem
polynomial.to_continuous_map_apply
{R : Type u_1}
[semiring R]
[topological_space R]
[topological_semiring R]
(p : polynomial R)
(x : R) :
⇑(p.to_continuous_map) x = polynomial.eval x p
@[simp]
theorem
polynomial.to_continuous_map_on_apply
{R : Type u_1}
[semiring R]
[topological_space R]
[topological_semiring R]
(p : polynomial R)
(X : set R)
(x : ↥X) :
⇑(p.to_continuous_map_on X) x = ⇑(p.to_continuous_map) ↑x
def
polynomial.to_continuous_map_on
{R : Type u_1}
[semiring R]
[topological_space R]
[topological_semiring R]
(p : polynomial R)
(X : set R) :
A polynomial as a continuous function, with domain restricted to some subset of the semiring of coefficients.
(This is particularly useful when restricting to compact sets, e.g. [0,1]
.)
Equations
- p.to_continuous_map_on X = {to_fun := λ (x : ↥X), ⇑(p.to_continuous_map) ↑x, continuous_to_fun := _}
@[simp]
theorem
polynomial.aeval_continuous_map_apply
{R : Type u_1}
{α : Type u_2}
[topological_space α]
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(g : polynomial R)
(f : C(α, R))
(x : α) :
⇑(⇑(polynomial.aeval f) g) x = polynomial.eval (⇑f x) g
def
polynomial.to_continuous_map_alg_hom
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R] :
The algebra map from polynomial R
to continuous functions C(R, R)
.
Equations
- polynomial.to_continuous_map_alg_hom = {to_fun := λ (p : polynomial R), p.to_continuous_map, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _, commutes' := _}
@[simp]
theorem
polynomial.to_continuous_map_alg_hom_apply
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(p : polynomial R) :
def
polynomial.to_continuous_map_on_alg_hom
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(X : set R) :
The algebra map from polynomial R
to continuous functions C(X, R)
, for any subset X
of R
.
Equations
- polynomial.to_continuous_map_on_alg_hom X = {to_fun := λ (p : polynomial R), p.to_continuous_map_on X, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _, commutes' := _}
@[simp]
theorem
polynomial.to_continuous_map_on_alg_hom_apply
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(X : set R)
(p : polynomial R) :
noncomputable
def
polynomial_functions
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(X : set R) :
subalgebra R C(↥X, R)
The subalgebra of polynomial functions in C(X, R)
, for X
a subset of some topological semiring
R
.
Equations
@[simp]
theorem
polynomial_functions_coe
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(X : set R) :
theorem
polynomial_functions_separates_points
{R : Type u_1}
[comm_semiring R]
[topological_space R]
[topological_semiring R]
(X : set R) :
The preimage of polynomials on [0,1]
under the pullback map by x ↦ (b-a) * x + a
is the polynomials on [a,b]
.