The category of open neighborhoods of a point #
Given an object X of the category Top of topological spaces and a point x : X, this file
builds the type open_nhds x of open neighborhoods of x in X and endows it with the partial
order given by inclusion and the corresponding category structure (as a full subcategory of the
poset category set X). This is used in topology.sheaves.stalks to build the stalk of a sheaf
at x as a limit over open_nhds x.
Main declarations #
Besides open_nhds, the main constructions here are:
inclusion (x : X): the obvious functoropen_nhds x ⥤ opens Xfunctor_nhds: An open mapf : X ⟶ Yinduces a functoropen_nhds x ⥤ open_nhds (f x)adjunction_nhds: An open mapf : X ⟶ Yinduces an adjunction betweenopen_nhds xandopen_nhds (f x).
The type of open neighbourhoods of a point x in a (bundled) topological space.
Equations
- topological_space.open_nhds x = category_theory.full_subcategory (λ (U : topological_space.opens ↥X), x ∈ U)
Equations
- topological_space.open_nhds.partial_order x = {le := λ (U V : topological_space.open_nhds x), U.obj ≤ V.obj, lt := preorder.lt._default (λ (U V : topological_space.open_nhds x), U.obj ≤ V.obj), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _}
Equations
- topological_space.open_nhds.lattice x = {sup := λ (U V : topological_space.open_nhds x), {obj := U.obj ⊔ V.obj, property := _}, le := partial_order.le (topological_space.open_nhds.partial_order x), lt := partial_order.lt (topological_space.open_nhds.partial_order x), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := λ (U V : topological_space.open_nhds x), {obj := U.obj ⊓ V.obj, property := _}, inf_le_left := _, inf_le_right := _, le_inf := _}
Equations
The inclusion U ⊓ V ⟶ U as a morphism in the category of open sets.
Equations
The inclusion U ⊓ V ⟶ V as a morphism in the category of open sets.
Equations
The inclusion functor from open neighbourhoods of x
to open sets in the ambient topological space.
Equations
The preimage functor from neighborhoods of f x to neighborhoods of x.
Equations
- topological_space.open_nhds.map f x = {obj := λ (U : topological_space.open_nhds (⇑f x)), {obj := (topological_space.opens.map f).obj U.obj, property := _}, map := λ (U V : topological_space.open_nhds (⇑f x)) (i : U ⟶ V), (topological_space.opens.map f).map i, map_id' := _, map_comp' := _}
opens.map f and open_nhds.map f form a commuting square (up to natural isomorphism)
with the inclusion functors into opens X.
Equations
- topological_space.open_nhds.inclusion_map_iso f x = category_theory.nat_iso.of_components (λ (U : topological_space.open_nhds (⇑f x)), {hom := 𝟙 ((topological_space.open_nhds.inclusion (⇑f x) ⋙ topological_space.opens.map f).obj U), inv := 𝟙 ((topological_space.open_nhds.map f x ⋙ topological_space.open_nhds.inclusion x).obj U), hom_inv_id' := _, inv_hom_id' := _}) _
An open map f : X ⟶ Y induces a functor open_nhds x ⥤ open_nhds (f x).
An open map f : X ⟶ Y induces an adjunction between open_nhds x and open_nhds (f x).
Equations
- h.adjunction_nhds x = category_theory.adjunction.mk_of_unit_counit {unit := {app := λ (U : topological_space.open_nhds x), category_theory.hom_of_le _, naturality' := _}, counit := {app := λ (V : topological_space.open_nhds (⇑f x)), category_theory.hom_of_le _, naturality' := _}, left_triangle' := _, right_triangle' := _}