Preserving binary products #
Constructions to relate the notions of preserving binary products and reflecting binary products to concrete binary fans.
In particular, we show that prod_comparison G X Y
is an isomorphism iff G
preserves
the product of X
and Y
.
The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This
essentially lets us commute binary_fan.mk
with functor.map_cone
.
Equations
- category_theory.limits.is_limit_map_cone_binary_fan_equiv G f g = (category_theory.limits.is_limit.postcompose_hom_equiv (category_theory.limits.diagram_iso_pair (category_theory.limits.pair X Y ⋙ G)) (G.map_cone (category_theory.limits.binary_fan.mk f g))).symm.trans (category_theory.limits.is_limit.equiv_iso_limit (category_theory.limits.cones.ext (category_theory.iso.refl ((category_theory.limits.cones.postcompose (category_theory.limits.diagram_iso_pair (category_theory.limits.pair X Y ⋙ G)).hom).obj (G.map_cone (category_theory.limits.binary_fan.mk f g))).X) _))
The property of preserving products expressed in terms of binary fans.
The property of reflecting products expressed in terms of binary fans.
If G
preserves binary products and C
has them, then the binary fan constructed of the mapped
morphisms of the binary product cone is a limit.
If the product comparison map for G
at (X,Y)
is an isomorphism, then G
preserves the
pair of (X,Y)
.
Equations
- category_theory.limits.preserves_limit_pair.of_iso_prod_comparison G X Y = category_theory.limits.preserves_limit_of_preserves_limit_cone (category_theory.limits.prod_is_prod X Y) (⇑((category_theory.limits.is_limit_map_cone_binary_fan_equiv G category_theory.limits.prod.fst category_theory.limits.prod.snd).symm) (category_theory.limits.limit.is_limit (category_theory.limits.pair (G.obj X) (G.obj Y))).of_point_iso)
If G
preserves the product of (X,Y)
, then the product comparison map for G
at (X,Y)
is
an isomorphism.
The map of a binary cofan is a colimit iff
the cofork consisting of the mapped morphisms is a colimit.
This essentially lets us commute binary_cofan.mk
with functor.map_cocone
.
Equations
- category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv G f g = (category_theory.limits.is_colimit.precompose_hom_equiv (category_theory.limits.diagram_iso_pair (category_theory.limits.pair X Y ⋙ G)).symm (G.map_cocone (category_theory.limits.binary_cofan.mk f g))).symm.trans (category_theory.limits.is_colimit.equiv_iso_colimit (category_theory.limits.cocones.ext (category_theory.iso.refl ((category_theory.limits.cocones.precompose (category_theory.limits.diagram_iso_pair (category_theory.limits.pair X Y ⋙ G)).symm.hom).obj (G.map_cocone (category_theory.limits.binary_cofan.mk f g))).X) _))
The property of preserving coproducts expressed in terms of binary cofans.
The property of reflecting coproducts expressed in terms of binary cofans.
If G
preserves binary coproducts and C
has them, then the binary cofan constructed of the mapped
morphisms of the binary product cocone is a colimit.
If the coproduct comparison map for G
at (X,Y)
is an isomorphism, then G
preserves the
pair of (X,Y)
.
Equations
- category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison G X Y = category_theory.limits.preserves_colimit_of_preserves_colimit_cocone (category_theory.limits.coprod_is_coprod X Y) (⇑((category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv G category_theory.limits.coprod.inl category_theory.limits.coprod.inr).symm) (category_theory.limits.colimit.is_colimit (category_theory.limits.pair (G.obj X) (G.obj Y))).of_point_iso)
If G
preserves the coproduct of (X,Y)
, then the coproduct comparison map for G
at (X,Y)
is
an isomorphism.