Enriched categories #
We set up the basic theory of V
-enriched categories,
for V
an arbitrary monoidal category.
We do not assume here that V
is a concrete category,
so there does not need to be a "honest" underlying category!
Use X ⟶[V] Y
to obtain the V
object of morphisms from X
to Y
.
This file contains the definitions of V
-enriched categories and
V
-functors.
We don't yet define the V
-object of natural transformations
between a pair of V
-functors (this requires limits in V
),
but we do provide a presheaf isomorphic to the Yoneda embedding of this object.
We verify that when V = Type v
, all these notion reduce to the usual ones.
- hom : C → C → V
- id : Π (X : C), 𝟙_ V ⟶ category_theory.enriched_category.hom X X
- comp : Π (X Y Z : C), category_theory.enriched_category.hom X Y ⊗ category_theory.enriched_category.hom Y Z ⟶ category_theory.enriched_category.hom X Z
- id_comp : (∀ (X Y : C), (λ_ (category_theory.enriched_category.hom X Y)).inv ≫ (category_theory.enriched_category.id X ⊗ 𝟙 (category_theory.enriched_category.hom X Y)) ≫ category_theory.enriched_category.comp X X Y = 𝟙 (category_theory.enriched_category.hom X Y)) . "obviously"
- comp_id : (∀ (X Y : C), (ρ_ (category_theory.enriched_category.hom X Y)).inv ≫ (𝟙 (category_theory.enriched_category.hom X Y) ⊗ category_theory.enriched_category.id Y) ≫ category_theory.enriched_category.comp X Y Y = 𝟙 (category_theory.enriched_category.hom X Y)) . "obviously"
- assoc : (∀ (W X Y Z : C), (α_ (category_theory.enriched_category.hom W X) (category_theory.enriched_category.hom X Y) (category_theory.enriched_category.hom Y Z)).inv ≫ (category_theory.enriched_category.comp W X Y ⊗ 𝟙 (category_theory.enriched_category.hom Y Z)) ≫ category_theory.enriched_category.comp W Y Z = (𝟙 (category_theory.enriched_category.hom W X) ⊗ category_theory.enriched_category.comp X Y Z) ≫ category_theory.enriched_category.comp W X Z) . "obviously"
A V
-category is a category enriched in a monoidal category V
.
Note that we do not assume that V
is a concrete category,
so there may not be an "honest" underlying category at all!
Instances of this typeclass
Instances of other typeclasses for category_theory.enriched_category
- category_theory.enriched_category.has_sizeof_inst
The 𝟙_ V
-shaped generalized element giving the identity in a V
-enriched category.
Equations
The composition V
-morphism for a V
-enriched category.
Equations
- category_theory.e_comp V X Y Z = category_theory.enriched_category.comp X Y Z
A type synonym for C
, which should come equipped with a V
-enriched category structure.
In a moment we will equip this with the W
-enriched category structure
obtained by applying the functor F : lax_monoidal_functor V W
to each hom object.
Equations
Instances for category_theory.transport_enrichment
Equations
- category_theory.transport_enrichment.enriched_category F = {hom := λ (X Y : C), F.to_functor.obj (category_theory.enriched_category.hom X Y), id := λ (X : C), F.ε ≫ F.to_functor.map (category_theory.e_id V X), comp := λ (X Y Z : C), F.μ (category_theory.enriched_category.hom X Y) (category_theory.enriched_category.hom Y Z) ≫ F.to_functor.map (category_theory.e_comp V X Y Z), id_comp := _, comp_id := _, assoc := _}
Construct an honest category from a Type v
-enriched category.
Equations
- category_theory.category_of_enriched_category_Type C = {to_category_struct := {to_quiver := {hom := category_theory.enriched_category.hom 𝒞}, id := λ (X : C), category_theory.e_id (Type v) X punit.star, comp := λ (X Y Z : C) (f : X ⟶ Y) (g : Y ⟶ Z), category_theory.e_comp (Type v) X Y Z (f, g)}, id_comp' := _, comp_id' := _, assoc' := _}
Construct a Type v
-enriched category from an honest category.
We verify that an enriched category in Type u
is just the same thing as an honest category.
Equations
- category_theory.enriched_category_Type_equiv_category C = {to_fun := λ (𝒞 : category_theory.enriched_category (Type v) C), category_theory.category_of_enriched_category_Type C, inv_fun := λ (𝒞 : category_theory.category C), category_theory.enriched_category_Type_of_category C, left_inv := _, right_inv := _}
A type synonym for C
, which should come equipped with a V
-enriched category structure.
In a moment we will equip this with the (honest) category structure
so that X ⟶ Y
is (𝟙_ W) ⟶ (X ⟶[W] Y)
.
We obtain this category by
transporting the enrichment in V
along the lax monoidal functor coyoneda_tensor_unit
,
then using the equivalence of Type
-enriched categories with honest categories.
This is sometimes called the "underlying" category of an enriched category,
although some care is needed as the functor coyoneda_tensor_unit
,
which always exists, does not necessarily coincide with
"the forgetful functor" from V
to Type
, if such exists.
When V
is any of Type
, Top
, AddCommGroup
, or Module R
,
coyoneda_tensor_unit
is just the usual forgetful functor, however.
For V = Algebra R
, the usual forgetful functor is coyoneda of polynomial R
, not of R
.
(Perhaps we should have a typeclass for this situation: concrete_monoidal
?)
Equations
Instances for category_theory.forget_enrichment
Typecheck an object of C
as an object of forget_enrichment W C
.
Equations
Typecheck an object of forget_enrichment W C
as an object of C
.
Equations
Equations
Typecheck a (𝟙_ W)
-shaped W
-morphism as a morphism in forget_enrichment W C
.
Equations
Typecheck a morphism in forget_enrichment W C
as a (𝟙_ W)
-shaped W
-morphism.
Equations
The identity in the "underlying" category of an enriched category.
Composition in the "underlying" category of an enriched category.
- obj : C → D
- map : Π (X Y : C), category_theory.enriched_category.hom X Y ⟶ category_theory.enriched_category.hom (self.obj X) (self.obj Y)
- map_id' : (∀ (X : C), category_theory.e_id V X ≫ self.map X X = category_theory.e_id V (self.obj X)) . "obviously"
- map_comp' : (∀ (X Y Z : C), category_theory.e_comp V X Y Z ≫ self.map X Z = (self.map X Y ⊗ self.map Y Z) ≫ category_theory.e_comp V (self.obj X) (self.obj Y) (self.obj Z)) . "obviously"
A V
-functor F
between V
-enriched categories
has a V
-morphism from X ⟶[V] Y
to F.obj X ⟶[V] F.obj Y
,
satisfying the usual axioms.
Instances for category_theory.enriched_functor
- category_theory.enriched_functor.has_sizeof_inst
- category_theory.enriched_functor.inhabited
The identity enriched functor.
Equations
- category_theory.enriched_functor.id V C = {obj := λ (X : C), X, map := λ (X Y : C), 𝟙 (category_theory.enriched_category.hom X Y), map_id' := _, map_comp' := _}
Equations
Composition of enriched functors.
An enriched functor induces an honest functor of the underlying categories,
by mapping the (𝟙_ W)
-shaped morphisms.
Equations
- F.forget = {obj := λ (X : category_theory.forget_enrichment W C), category_theory.forget_enrichment.of W (F.obj (category_theory.forget_enrichment.to W X)), map := λ (X Y : category_theory.forget_enrichment W C) (f : X ⟶ Y), category_theory.forget_enrichment.hom_of W (category_theory.forget_enrichment.hom_to W f ≫ F.map (category_theory.forget_enrichment.to W X) (category_theory.forget_enrichment.to W Y)), map_id' := _, map_comp' := _}
We now turn to natural transformations between V
-functors.
The mostly commonly encountered definition of an enriched natural transformation is a collection of morphisms
(𝟙_ W) ⟶ (F.obj X ⟶[V] G.obj X)
satisfying an appropriate analogue of the naturality square. (c.f. https://ncatlab.org/nlab/show/enriched+natural+transformation)
This is the same thing as a natural transformation F.forget ⟶ G.forget
.
We formalize this as enriched_nat_trans F G
, which is a Type
.
However, there's also something much nicer: with appropriate additional hypotheses,
there is a V
-object enriched_nat_trans_obj F G
which contains more information,
and from which one can recover enriched_nat_trans F G ≃ (𝟙_ V) ⟶ enriched_nat_trans_obj F G
.
Using these as the hom-objects, we can build a V
-enriched category
with objects the V
-functors.
For enriched_nat_trans_obj
to exist, it suffices to have V
braided and complete.
Before assuming V
is complete, we assume it is braided and
define a presheaf enriched_nat_trans_yoneda F G
which is isomorphic to the Yoneda embedding of enriched_nat_trans_obj F G
whether or not that object actually exists.
This presheaf has components (enriched_nat_trans_yoneda F G).obj A
what we call the A
-graded enriched natural transformations,
which are collections of morphisms
A ⟶ (F.obj X ⟶[V] G.obj X)
satisfying a similar analogue of the naturality square,
this time incorporating a half-braiding on A
.
(We actually define enriched_nat_trans F G
as the special case A := 𝟙_ V
with the trivial half-braiding,
and when defining enriched_nat_trans_yoneda F G
we use the half-braidings
coming from the ambient braiding on V
.)
- app : Π (X : C), A.fst ⟶ category_theory.enriched_category.hom (F.obj X) (G.obj X)
- naturality : ∀ (X Y : C), (A.snd.β (category_theory.enriched_category.hom X Y)).hom ≫ (F.map X Y ⊗ self.app Y) ≫ category_theory.e_comp V (F.obj X) (F.obj Y) (G.obj Y) = (self.app X ⊗ G.map X Y) ≫ category_theory.e_comp V (F.obj X) (G.obj X) (G.obj Y)
The type of A
-graded natural transformations between V
-functors F
and G
.
This is the type of morphisms in V
from A
to the V
-object of natural transformations.
Instances for category_theory.graded_nat_trans
- category_theory.graded_nat_trans.has_sizeof_inst
A presheaf isomorphic to the Yoneda embedding of
the V
-object of natural transformations from F
to G
.
Equations
- category_theory.enriched_nat_trans_yoneda F G = {obj := λ (A : Vᵒᵖ), category_theory.graded_nat_trans ((category_theory.center.of_braided V).to_lax_monoidal_functor.to_functor.obj (opposite.unop A)) F G, map := λ (A A' : Vᵒᵖ) (f : A ⟶ A') (σ : category_theory.graded_nat_trans ((category_theory.center.of_braided V).to_lax_monoidal_functor.to_functor.obj (opposite.unop A)) F G), {app := λ (X : C), f.unop ≫ σ.app X, naturality := _}, map_id' := _, map_comp' := _}
We verify that an enriched functor between Type v
enriched categories
is just the same thing as an honest functor.
Equations
- category_theory.enriched_functor_Type_equiv_functor = {to_fun := λ (F : category_theory.enriched_functor (Type v) C D), {obj := λ (X : C), F.obj X, map := λ (X Y : C) (f : X ⟶ Y), F.map X Y f, map_id' := _, map_comp' := _}, inv_fun := λ (F : C ⥤ D), {obj := λ (X : C), F.obj X, map := λ (X Y : C) (f : category_theory.enriched_category.hom X Y), F.map f, map_id' := _, map_comp' := _}, left_inv := _, right_inv := _}
We verify that the presheaf representing natural transformations
between Type v
-enriched functors is actually represented by
the usual type of natural transformations!
Equations
- category_theory.enriched_nat_trans_yoneda_Type_iso_yoneda_nat_trans F G = category_theory.nat_iso.of_components (λ (α : (Type v)ᵒᵖ), {hom := λ (σ : (category_theory.enriched_nat_trans_yoneda F G).obj α) (x : opposite.unop α), {app := λ (X : C), σ.app X x, naturality' := _}, inv := λ (σ : (category_theory.yoneda.obj (⇑category_theory.enriched_functor_Type_equiv_functor F ⟶ ⇑category_theory.enriched_functor_Type_equiv_functor G)).obj α), {app := λ (X : C) (x : ((category_theory.center.of_braided (Type v)).to_lax_monoidal_functor.to_functor.obj (opposite.unop α)).fst), (σ x).app X, naturality := _}, hom_inv_id' := _, inv_hom_id' := _}) _