Affine schemes #
We define the category of AffineScheme
s as the essential image of Spec
.
We also define predicates about affine schemes and affine open sets.
Main definitions #
algebraic_geometry.AffineScheme
: The category of affine schemes.algebraic_geometry.is_affine
: A scheme is affine if the canonical mapX ⟶ Spec Γ(X)
is an isomorphism.algebraic_geometry.Scheme.iso_Spec
: The canonical isomorphismX ≅ Spec Γ(X)
for an affine scheme.algebraic_geometry.AffineScheme.equiv_CommRing
: The equivalence of categoriesAffineScheme ≌ CommRingᵒᵖ
given byAffineScheme.Spec : CommRingᵒᵖ ⥤ AffineScheme
andAffineScheme.Γ : AffineSchemeᵒᵖ ⥤ CommRing
.algebraic_geometry.is_affine_open
: An open subset of a scheme is affine if the open subscheme is affine.algebraic_geometry.is_affine_open.from_Spec
: The immersionSpec 𝒪ₓ(U) ⟶ X
for an affineU
.
The category of affine schemes
Instances for algebraic_geometry.AffineScheme
A Scheme is affine if the canonical map X ⟶ Spec Γ(X)
is an isomorphism.
Instances of this typeclass
- algebraic_geometry.is_affine_of_is_empty
- algebraic_geometry.is_affine_AffineScheme
- algebraic_geometry.Spec_is_affine
- algebraic_geometry.Scheme.affine_cover_is_affine
- algebraic_geometry.Scheme.affine_basis_cover_is_affine
- algebraic_geometry.obj.is_affine
- algebraic_geometry.category_theory.limits.terminal.is_affine
The canonical isomorphism X ≅ Spec Γ(X)
for an affine scheme.
Equations
Construct an affine scheme from a scheme and the information that it is affine.
Also see AffineScheme.of
for a typclass version.
Equations
- algebraic_geometry.AffineScheme.mk X h = {obj := X, property := _}
Construct an affine scheme from a scheme. Also see AffineScheme.mk
for a non-typeclass
version.
Equations
Type check a morphism of schemes as a morphism in AffineScheme
.
Equations
The Spec
functor into the category of affine schemes.
Instances for algebraic_geometry.AffineScheme.Spec
The forgetful functor AffineScheme ⥤ Scheme
.
Equations
Instances for algebraic_geometry.AffineScheme.forget_to_Scheme
The global section functor of an affine scheme.
Equations
Instances for algebraic_geometry.AffineScheme.Γ
The category of affine schemes is equivalent to the category of commutative rings.
An open subset of a scheme is affine if the open subscheme is affine.
Equations
The set of affine opens as a subset of opens X.carrier
.
Equations
The open immersion Spec 𝒪ₓ(U) ⟶ X
for an affine U
.
Equations
- hU.from_Spec = algebraic_geometry.Scheme.Spec.map (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.map (category_theory.eq_to_hom algebraic_geometry.is_affine_open.from_Spec._proof_4).op).op ≫ (X.restrict algebraic_geometry.is_affine_open.from_Spec._proof_5).iso_Spec.inv ≫ X.of_restrict algebraic_geometry.is_affine_open.from_Spec._proof_6
The canonical map Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(Spec_Γ_identity.inv f))
This is an isomorphism, as witnessed by an is_iso
instance.
Equations
- algebraic_geometry.basic_open_sections_to_affine hU f = hU.from_Spec.val.c.app (opposite.op (X.basic_open f)) ≫ (algebraic_geometry.Scheme.Spec.obj (opposite.op (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op U)))).to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.map (category_theory.eq_to_hom _).op
Instances for algebraic_geometry.basic_open_sections_to_affine
Equations
The prime ideal of 𝒪ₓ(U)
corresponding to a point x : U
.
Equations
- hU.prime_ideal_of x = ⇑((algebraic_geometry.Scheme.Spec.map (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.map (category_theory.eq_to_hom algebraic_geometry.is_affine_open.prime_ideal_of._proof_6).op).op).val.base) (⇑((X.restrict algebraic_geometry.is_affine_open.prime_ideal_of._proof_8).iso_Spec.hom.val.base) x)
The basic open set of a section f
on an an affine open as an X.affine_opens
.
Equations
- X.affine_basic_open f = ⟨X.basic_open f, _⟩
Let P
be a predicate on the affine open sets of X
satisfying
- If
P
holds onU
, thenP
holds on the basic open set of every section onU
. - If
P
holds for a family of basic open sets coveringU
, thenP
holds forU
. - There exists an affine open cover of
X
each satisfyingP
.
Then P
holds for every affine open of X
.
This is also known as the Affine communication lemma in Vakil's "The rising sea".