Defining a group given by generators and relations #
Given a subset rels of relations of the free group on a type α, this file constructs the group
given by generators x : α and relations r ∈ rels.
Main definitions #
presented_group rels: the quotient group of the free group on a typeαby a subsetrelsof relations of the free group onα.of: The canonical map fromαto a presented group with generatorsα.to_group f: the canonical group homomorphismpresented_group rels → G, given a functionf : α → Gfrom a typeαto a groupGwhich satisfies the relationsrels.
Tags #
generators, relations, group presentations
Given a set of relations, rels, over a type α, presented_group constructs the group with
generators x : α and relations rels as a quotient of free_group α.
Equations
- presented_group rels = (free_group α ⧸ subgroup.normal_closure rels)
Instances for presented_group
@[protected, instance]
Equations
of is the canonical map from α to a presented group with generators x : α. The term x is
mapped to the equivalence class of the image of x in free_group α.
Equations
theorem
presented_group.closure_rels_subset_ker
{α G : Type}
[group G]
{f : α → G}
{rels : set (free_group α)}
(h : ∀ (r : free_group α), r ∈ rels → ⇑(⇑free_group.lift f) r = 1) :
subgroup.normal_closure rels ≤ (⇑free_group.lift f).ker
theorem
presented_group.to_group_eq_one_of_mem_closure
{α G : Type}
[group G]
{f : α → G}
{rels : set (free_group α)}
(h : ∀ (r : free_group α), r ∈ rels → ⇑(⇑free_group.lift f) r = 1)
(x : free_group α)
(H : x ∈ subgroup.normal_closure rels) :
⇑(⇑free_group.lift f) x = 1
def
presented_group.to_group
{α G : Type}
[group G]
{f : α → G}
{rels : set (free_group α)}
(h : ∀ (r : free_group α), r ∈ rels → ⇑(⇑free_group.lift f) r = 1) :
presented_group rels →* G
The extension of a map f : α → G that satisfies the given relations to a group homomorphism
from presented_group rels → G.
Equations
@[simp]
theorem
presented_group.to_group.of
{α G : Type}
[group G]
{f : α → G}
{rels : set (free_group α)}
(h : ∀ (r : free_group α), r ∈ rels → ⇑(⇑free_group.lift f) r = 1)
{x : α} :
⇑(presented_group.to_group h) (presented_group.of x) = f x
theorem
presented_group.to_group.unique
{α G : Type}
[group G]
{f : α → G}
{rels : set (free_group α)}
(h : ∀ (r : free_group α), r ∈ rels → ⇑(⇑free_group.lift f) r = 1)
(g : presented_group rels →* G)
(hg : ∀ (x : α), ⇑g (presented_group.of x) = f x)
{x : presented_group rels} :
⇑g x = ⇑(presented_group.to_group h) x
@[protected, instance]
def
presented_group.inhabited
{α : Type}
(rels : set (free_group α)) :
inhabited (presented_group rels)
Equations
- presented_group.inhabited rels = {default := 1}