Change Of Rings #
Main definitions #
-
category_theory.Module.restrict_scalars: given ringsR, Sand a ring homomorphismR ⟶ S, thenrestrict_scalars : Module S ⥤ Module Ris defined byM ↦ MwhereM : S-moduleis seen asR-modulebyr • m := f r • mandS-linear mapl : M ⟶ M'isR-linear as well. -
category_theory.Module.extend_scalars: given commutative ringsR, Sand ring homomorphismf : R ⟶ S, thenextend_scalars : Module R ⥤ Module Sis defined byM ↦ S ⨂ Mwhere the module structure is defined bys • (s' ⊗ m) := (s * s') ⊗ mandR-linear mapl : M ⟶ M'is sent toS-linear maps ⊗ m ↦ s ⊗ l m : S ⨂ M ⟶ S ⨂ M'.
List of notations #
Let R, S be rings and f : R →+* S
- if
Mis anR-module,s : Sandm : M, thens ⊗ₜ[R, f] mis the pure tensors ⊗ m : S ⊗[R, f] M.
Any S-module M is also an R-module via a ring homomorphism f : R ⟶ S by defining
r • m := f r • m (module.comp_hom). This is called restriction of scalars.
Equations
The restriction of scalars operation is functorial. For any f : R →+* S a ring homomorphism,
- an
S-moduleMcan be considered asR-module byr • m = f r • m - an
S-linear map is alsoR-linear
Equations
- category_theory.Module.restrict_scalars f = {obj := category_theory.Module.restrict_scalars.obj' f, map := λ (_x _x_1 : Module S), category_theory.Module.restrict_scalars.map' f, map_id' := _, map_comp' := _}
Extension of scalars is a functor where an R-module M is sent to S ⊗ M and
l : M1 ⟶ M2 is sent to s ⊗ m ↦ s ⊗ l m
Equations
- category_theory.Module.extend_scalars f = {obj := λ (M : Module R), category_theory.Module.extend_scalars.obj' f M, map := λ (M1 M2 : Module R) (l : M1 ⟶ M2), category_theory.Module.extend_scalars.map' f l, map_id' := _, map_comp' := _}