Limits over essentially small indexing categories #
If C
has limits of size w
and J
is w
-essentially small, then C
has limits of shape J
.
theorem
category_theory.limits.has_limits_of_shape_of_essentially_small
(J : Type u₂)
[category_theory.category J]
(C : Type u₁)
[category_theory.category C]
[category_theory.essentially_small J]
[category_theory.limits.has_limits_of_size C] :
theorem
category_theory.limits.has_colimits_of_shape_of_essentially_small
(J : Type u₂)
[category_theory.category J]
(C : Type u₁)
[category_theory.category C]
[category_theory.essentially_small J]
[category_theory.limits.has_colimits_of_size C] :
theorem
category_theory.limits.has_products_of_shape_of_small
(C : Type u₁)
[category_theory.category C]
(β : Type w₂)
[small β]
[category_theory.limits.has_products C] :
theorem
category_theory.limits.has_coproducts_of_shape_of_small
(C : Type u₁)
[category_theory.category C]
(β : Type w₂)
[small β]
[category_theory.limits.has_coproducts C] :