Completion of normed groups #
In this file we show that the completion of a normed group is naturally a normed group.
Main declaration #
uniform_space.completion.normed_group
: the normed group instance on the completion of a normed group
@[protected, instance]
Equations
@[simp]
@[protected, instance]
Equations
- uniform_space.completion.normed_group V = {to_has_norm := uniform_space.completion.has_norm V semi_normed_group.to_has_norm, to_add_comm_group := {add := add_comm_group.add (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), add_assoc := _, zero := add_comm_group.zero (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), sub := add_comm_group.sub (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), sub_eq_add_neg := _, gsmul := add_comm_group.gsmul (show add_comm_group (uniform_space.completion V), from uniform_space.completion.add_comm_group), gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _}, to_metric_space := {to_pseudo_metric_space := metric_space.to_pseudo_metric_space (show metric_space (uniform_space.completion V), from metric.completion.metric_space), eq_of_dist_eq_zero := _}, dist_eq := _}