Floor and Ceil #
Summary #
We define floor
, ceil
, and nat_ceil
functions on linear ordered rings.
Main Definitions #
floor_ring
is a linear ordered ring with floor function.floor x
is the greatest integerz
such thatz ≤ x
.fract x
is the fractional part of x, that isx - floor x
.ceil x
is the smallest integerz
such thatx ≤ z
.nat_ceil x
is the smallest nonnegative integern
withx ≤ n
.
Notations #
Tags #
rounding
@[class]
A floor_ring
is a linear ordered ring over α
with a function
floor : α → ℤ
satisfying ∀ (z : ℤ) (x : α), z ≤ floor x ↔ (z : α) ≤ x)
.
Instances
@[protected, instance]
floor x
is the greatest integer z
such that z ≤ x
Equations
@[simp]
@[simp]
theorem
abs_sub_lt_one_of_floor_eq_floor
{α : Type u_1}
[linear_ordered_comm_ring α]
[floor_ring α]
{x y : α}
(h : ⌊x⌋ = ⌊y⌋) :
theorem
floor_eq_on_Ico
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
(n : ℤ)
(x : α)
(H : x ∈ set.Ico ↑n (↑n + 1)) :
theorem
floor_eq_on_Ico'
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
(n : ℤ)
(x : α)
(H : x ∈ set.Ico ↑n (↑n + 1)) :
The fractional part fract r of r is just r - ⌊r⌋
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
ceil_eq_on_Ioc
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
(n : ℤ)
(x : α)
(H : x ∈ set.Ioc (↑n - 1) ↑n) :
theorem
ceil_eq_on_Ioc'
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
(n : ℤ)
(x : α)
(H : x ∈ set.Ioc (↑n - 1) ↑n) :
theorem
nat_ceil_mono
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
{a₁ a₂ : α}
(h : a₁ ≤ a₂) :
@[simp]
@[simp]
theorem
nat_ceil_add_nat
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
{a : α}
(a_nonneg : 0 ≤ a)
(n : ℕ) :
theorem
nat_ceil_lt_add_one
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
{a : α}
(a_nonneg : 0 ≤ a) :
theorem
lt_of_nat_ceil_lt
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
{x : α}
{n : ℕ}
(h : nat_ceil x < n) :
theorem
le_of_nat_ceil_le
{α : Type u_1}
[linear_ordered_ring α]
[floor_ring α]
{x : α}
{n : ℕ}
(h : nat_ceil x ≤ n) :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]