- preimage : Π {X Y : C}, (F.obj X ⟶ F.obj Y) → (X ⟶ Y)
- witness' : (∀ {X Y : C} (f : F.obj X ⟶ F.obj Y), F.map (category_theory.full.preimage f) = f) . "obviously"
A functor F : C ⥤ D
is full if for each X Y : C
, F.map
is surjective.
In fact, we use a constructive definition, so the full F
typeclass contains data,
specifying a particular preimage of each f : F.obj X ⟶ F.obj Y
.
See https://stacks.math.columbia.edu/tag/001C.
Instances
- category_theory.equivalence.full_of_equivalence
- category_theory.reflective.to_full
- category_theory.full.id
- category_theory.full.comp
- category_theory.ulift_functor_full
- category_theory.induced_category.full
- category_theory.full_subcategory.full
- category_theory.functor.ess_image_inclusion.full
- category_theory.functor.op.category_theory.full
- category_theory.bundled_hom.forget₂_full
- CommRing.category_theory.forget₂.category_theory.full
- category_theory.yoneda.yoneda_full
- category_theory.coyoneda.coyoneda_full
- category_theory.limits.cones.functoriality_full
- category_theory.limits.cocones.functoriality_full
- category_theory.Type_to_Cat.full
- Module.forget₂_AddCommGroup_full
- category_theory.reflective.comparison_full
- category_theory.mono_over.forget.category_theory.full
- category_theory.mono_over.full_map
- category_theory.from_skeleton.full
- Top.sheaf.forget.full
- simplex_category.skeletal_functor.category_theory.full
- simplex_category.truncated.inclusion.full
- Mon.to_Cat_full
- category_theory.Groupoid.forget_to_Cat_full
- category_theory.sigma.incl.category_theory.full
- category_theory.component.ι.full
- category_theory.decomposed_to.full
- Fintype.incl.full
- Fintype.skeleton.incl.category_theory.full
- CommMon_.forget₂_Mon_.full
- category_theory.Mat_.embedding.category_theory.full
- category_theory.quotient.functor.category_theory.full
- category_theory.SheafOfTypes_to_presheaf.full
- category_theory.Sheaf_to_presheaf.full
- category_theory.subterminal_inclusion.full
- category_theory.with_terminal.incl.category_theory.full
- category_theory.with_initial.incl.category_theory.full
- CompHaus_to_Top.full
- Profinite_to_Top.full
- Profinite.to_CompHaus.category_theory.full
- map_injective' : (∀ {X Y : C}, function.injective F.map) . "obviously"
A functor F : C ⥤ D
is faithful if for each X Y : C
, F.map
is injective.
See https://stacks.math.columbia.edu/tag/001C.
Instances
- category_theory.equivalence.faithful_of_equivalence
- category_theory.reflective.to_faithful
- category_theory.faithful.id
- category_theory.faithful.comp
- category_theory.ulift_functor_faithful
- category_theory.induced_category.faithful
- category_theory.full_subcategory.faithful
- category_theory.functor.ess_image_inclusion.faithful
- category_theory.functor.op.category_theory.faithful
- category_theory.functor.right_op_faithful
- category_theory.functor.left_op_faithful
- category_theory.concrete_category.forget_faithful
- category_theory.forget_faithful
- category_theory.functor.const.category_theory.faithful
- category_theory.yoneda.yoneda_faithful
- category_theory.coyoneda.coyoneda_faithful
- category_theory.limits.cones.functoriality_faithful
- category_theory.limits.cocones.functoriality_faithful
- category_theory.over.forget_faithful
- category_theory.Type_to_Cat.faithful
- category_theory.monoidal_category.tensoring_right.category_theory.faithful
- category_theory.monad_to_functor.faithful
- category_theory.comonad_to_functor.faithful
- category_theory.monad.forget_faithful
- category_theory.comonad.forget_faithful
- category_theory.reflective.comparison_faithful
- category_theory.mono_over.forget.category_theory.faithful
- category_theory.mono_over.faithful_map
- category_theory.mono_over.faithful_exists
- category_theory.from_skeleton.faithful
- category_theory.thin_skeleton.to_thin_skeleton_faithful
- category_theory.subobject.pullback.category_theory.faithful
- category_theory.graded_object.total.category_theory.faithful
- category_theory.differential_object.forget_faithful
- Top.sheaf.forget.faithful
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.faithful
- simplex_category.skeletal_functor.category_theory.faithful
- simplex_category.truncated.inclusion.faithful
- Mon.to_Cat_faithful
- category_theory.Groupoid.forget_to_Cat_faithful
- category_theory.sigma.incl.category_theory.faithful
- category_theory.component.ι.faithful
- category_theory.decomposed_to.faithful
- category_theory.core.inclusion.category_theory.faithful
- Fintype.incl.faithful
- Fintype.skeleton.incl.category_theory.faithful
- Mon_.forget_faithful
- CommMon_.forget₂_Mon_.faithful
- category_theory.Mat_.embedding.category_theory.faithful
- category_theory.SheafOfTypes_to_presheaf.faithful
- category_theory.Sheaf_to_presheaf.faithful
- category_theory.subterminal_inclusion.faithful
- category_theory.with_terminal.incl.category_theory.faithful
- category_theory.with_initial.incl.category_theory.faithful
- CompHaus_to_Top.faithful
- Compactum.forget.faithful
- Profinite_to_Top.faithful
- Profinite.to_CompHaus.category_theory.faithful
The specified preimage of a morphism under a full functor.
Equations
If F : C ⥤ D
is fully faithful, every isomorphism F.obj X ≅ F.obj Y
has a preimage.
Equations
- category_theory.preimage_iso f = {hom := F.preimage f.hom, inv := F.preimage f.inv, hom_inv_id' := _, inv_hom_id' := _}
If the image of a morphism under a fully faithful functor in an isomorphism, then the original morphisms is also an isomorphism.
If F
is fully faithful, we have an equivalence of hom-sets X ⟶ Y
and F X ⟶ F Y
.
Alias of faithful.of_comp_iso
.
Alias of faithful.of_comp_eq
.
“Divide” a functor by a faithful functor.
Given a natural isomorphism between F ⋙ H
and G ⋙ H
for a fully faithful functor H
, we
can 'cancel' it to give a natural iso between F
and G
.
Equations
- category_theory.fully_faithful_cancel_right H comp_iso = category_theory.nat_iso.of_components (λ (X : C), category_theory.preimage_iso (comp_iso.app X)) _