Equivariant homomorphisms #
Main definitions #
mul_action_hom M X Y, the type of equivariant functions fromXtoY, whereMis a monoid that acts on the typesXandY.distrib_mul_action_hom M A B, the type of equivariant additive monoid homomorphisms fromAtoB, whereMis a monoid that acts on the additive monoidsAandB.mul_semiring_action_hom M R S, the type of equivariant ring homomorphisms fromRtoS, whereMis a monoid that acts on the ringsRandS.
Notations #
X →[M] Yismul_action_hom M X Y.A →+[M] Bisdistrib_mul_action_hom M X Y.R →+*[M] Sismul_semiring_action_hom M X Y.
Equivariant functions.
The identity map as an equivariant map.
Composition of two equivariant maps.
The canonical map to the left cosets.
Equations
- mul_action_hom.to_quotient H = {to_fun := coe coe_to_lift, map_smul' := _}
Reinterpret an equivariant additive monoid homomorphism as an equivariant function.
Reinterpret an equivariant additive monoid homomorphism as an additive monoid homomorphism.
- to_fun : A → B
- map_smul' : ∀ (m : M) (x : A), c.to_fun (m • x) = m • c.to_fun x
- map_zero' : c.to_fun 0 = 0
- map_add' : ∀ (x y : A), c.to_fun (x + y) = c.to_fun x + c.to_fun y
Equivariant additive monoid homomorphisms.
Equations
- distrib_mul_action_hom.has_coe M A B = {coe := distrib_mul_action_hom.to_add_monoid_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe' M A B = {coe := distrib_mul_action_hom.to_mul_action_hom _inst_10}
The identity map as an equivariant additive monoid homomorphism.
Composition of two equivariant additive monoid homomorphisms.
Reinterpret an equivariant ring homomorphism as an equivariant additive monoid homomorphism.
Reinterpret an equivariant ring homomorphism as a ring homomorphism.
- to_fun : R → S
- map_smul' : ∀ (m : M) (x : R), c.to_fun (m • x) = m • c.to_fun x
- map_zero' : c.to_fun 0 = 0
- map_add' : ∀ (x y : R), c.to_fun (x + y) = c.to_fun x + c.to_fun y
- map_one' : c.to_fun 1 = 1
- map_mul' : ∀ (x y : R), c.to_fun (x * y) = (c.to_fun x) * c.to_fun y
Equivariant ring homomorphisms.
Equations
- mul_semiring_action_hom.has_coe M R S = {coe := mul_semiring_action_hom.to_ring_hom _inst_20}
Equations
- mul_semiring_action_hom.has_coe' M R S = {coe := mul_semiring_action_hom.to_distrib_mul_action_hom _inst_20}
The identity map as an equivariant ring homomorphism.
Composition of two equivariant additive monoid homomorphisms.
The canonical inclusion from an invariant subring.