Ordered groups #
This file develops the basics of ordered groups.
Implementation details #
Unfortunately, the number of '
appended to lemmas in this file
may differ between the multiplicative and the additive version of a lemma.
The reason is that we did not want to change existing names in the library.
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), ordered_add_comm_group.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), ordered_add_comm_group.nsmul n.succ x = x + ordered_add_comm_group.nsmul n x) . "try_refl_tac"
- neg : α → α
- sub : α → α → α
- sub_eq_add_neg : (∀ (a b : α), a - b = a + -b) . "try_refl_tac"
- gsmul : ℤ → α → α
- gsmul_zero' : (∀ (a : α), ordered_add_comm_group.gsmul 0 a = 0) . "try_refl_tac"
- gsmul_succ' : (∀ (n : ℕ) (a : α), ordered_add_comm_group.gsmul (int.of_nat n.succ) a = a + ordered_add_comm_group.gsmul (int.of_nat n) a) . "try_refl_tac"
- gsmul_neg' : (∀ (n : ℕ) (a : α), ordered_add_comm_group.gsmul -[1+ n] a = -ordered_add_comm_group.gsmul ↑(n.succ) a) . "try_refl_tac"
- add_left_neg : ∀ (a : α), -a + a = 0
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c_1 : α), c_1 + a ≤ c_1 + b
An ordered additive commutative group is an additive commutative group with a partial order in which addition is strictly monotone.
Instances
- linear_ordered_add_comm_group.to_ordered_add_comm_group
- nonneg_add_comm_group.to_ordered_add_comm_group
- ordered_ring.to_ordered_add_comm_group
- add_units.ordered_add_comm_group
- order_dual.ordered_add_comm_group
- prod.ordered_add_comm_group
- additive.ordered_add_comm_group
- rat.ordered_add_comm_group
- add_subgroup.to_ordered_add_comm_group
- submodule.to_ordered_add_comm_group
- pi.ordered_add_comm_group
- real.ordered_add_comm_group
- filter.germ.ordered_add_comm_group
- pilex.ordered_add_comm_group
- surreal.ordered_add_comm_group
- mul : α → α → α
- mul_assoc : ∀ (a b c_1 : α), (a * b) * c_1 = a * b * c_1
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), ordered_comm_group.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), ordered_comm_group.npow n.succ x = x * ordered_comm_group.npow n x) . "try_refl_tac"
- inv : α → α
- div : α → α → α
- div_eq_mul_inv : (∀ (a b : α), a / b = a * b⁻¹) . "try_refl_tac"
- gpow : ℤ → α → α
- gpow_zero' : (∀ (a : α), ordered_comm_group.gpow 0 a = 1) . "try_refl_tac"
- gpow_succ' : (∀ (n : ℕ) (a : α), ordered_comm_group.gpow (int.of_nat n.succ) a = a * ordered_comm_group.gpow (int.of_nat n) a) . "try_refl_tac"
- gpow_neg' : (∀ (n : ℕ) (a : α), ordered_comm_group.gpow -[1+ n] a = (ordered_comm_group.gpow ↑(n.succ) a)⁻¹) . "try_refl_tac"
- mul_left_inv : ∀ (a : α), a⁻¹ * a = 1
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c_1 : α), c_1 * a ≤ c_1 * b
An ordered commutative group is an commutative group with a partial order in which multiplication is strictly monotone.
The units of an ordered commutative monoid form an ordered commutative group.
Equations
- units.ordered_comm_group = {mul := comm_group.mul infer_instance, mul_assoc := _, one := comm_group.one infer_instance, one_mul := _, mul_one := _, npow := comm_group.npow infer_instance, npow_zero' := _, npow_succ' := _, inv := comm_group.inv infer_instance, div := comm_group.div infer_instance, div_eq_mul_inv := _, gpow := comm_group.gpow infer_instance, gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := partial_order.le units.partial_order, lt := partial_order.lt units.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Equations
- ordered_comm_group.to_ordered_cancel_comm_monoid α = {mul := ordered_comm_group.mul s, mul_assoc := _, mul_left_cancel := _, one := ordered_comm_group.one s, one_mul := _, mul_one := _, npow := ordered_comm_group.npow s, npow_zero' := _, npow_succ' := _, mul_comm := _, le := ordered_comm_group.le s, lt := ordered_comm_group.lt s, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _, le_of_mul_le_mul_left := _}
Pullback an ordered_add_comm_group
under an injective map.
Pullback an ordered_comm_group
under an injective map.
Equations
- function.injective.ordered_comm_group f hf one mul inv div = {mul := ordered_comm_monoid.mul (function.injective.ordered_comm_monoid f hf one mul), mul_assoc := _, one := ordered_comm_monoid.one (function.injective.ordered_comm_monoid f hf one mul), one_mul := _, mul_one := _, npow := ordered_comm_monoid.npow (function.injective.ordered_comm_monoid f hf one mul), npow_zero' := _, npow_succ' := _, inv := comm_group.inv (function.injective.comm_group f hf one mul inv div), div := comm_group.div (function.injective.comm_group f hf one mul inv div), div_eq_mul_inv := _, gpow := comm_group.gpow (function.injective.comm_group f hf one mul inv div), gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := partial_order.le (partial_order.lift f hf), lt := partial_order.lt (partial_order.lift f hf), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Alias of sub_le_self_iff
.
Alias of sub_lt_self_iff
.
Alias of sub_nonneg
.
Alias of sub_nonneg
.
Alias of sub_nonpos
.
Alias of sub_nonpos
.
Alias of sub_pos
.
Alias of sub_pos
.
Alias of sub_lt_zero
.
Alias of sub_lt_zero
.
Alias of le_sub_iff_add_le
.
Alias of le_sub_iff_add_le
.
Alias of le_sub_iff_add_le'
.
Alias of le_sub_iff_add_le'
.
Alias of lt_sub_iff_add_lt'
.
Alias of lt_sub_iff_add_lt'
.
Alias of lt_sub_iff_add_lt
.
Alias of lt_sub_iff_add_lt
.
Alias of sub_lt_iff_lt_add'
.
Alias of sub_lt_iff_lt_add'
.
Alias of sub_lt_iff_lt_add
.
Alias of sub_lt_iff_lt_add
.
Linearly ordered commutative groups #
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), linear_ordered_add_comm_group.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), linear_ordered_add_comm_group.nsmul n.succ x = x + linear_ordered_add_comm_group.nsmul n x) . "try_refl_tac"
- neg : α → α
- sub : α → α → α
- sub_eq_add_neg : (∀ (a b : α), a - b = a + -b) . "try_refl_tac"
- gsmul : ℤ → α → α
- gsmul_zero' : (∀ (a : α), linear_ordered_add_comm_group.gsmul 0 a = 0) . "try_refl_tac"
- gsmul_succ' : (∀ (n : ℕ) (a : α), linear_ordered_add_comm_group.gsmul (int.of_nat n.succ) a = a + linear_ordered_add_comm_group.gsmul (int.of_nat n) a) . "try_refl_tac"
- gsmul_neg' : (∀ (n : ℕ) (a : α), linear_ordered_add_comm_group.gsmul -[1+ n] a = -linear_ordered_add_comm_group.gsmul ↑(n.succ) a) . "try_refl_tac"
- add_left_neg : ∀ (a : α), -a + a = 0
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c_1 : α), c_1 + a ≤ c_1 + b
A linearly ordered additive commutative group is an additive commutative group with a linear order in which addition is monotone.
Instances
- linear_ordered_ring.to_linear_ordered_add_comm_group
- normed_linear_ordered_group.to_linear_ordered_add_comm_group
- order_dual.linear_ordered_add_comm_group
- additive.linear_ordered_add_comm_group
- int.linear_ordered_add_comm_group
- rat.linear_ordered_add_comm_group
- add_subgroup.to_linear_ordered_add_comm_group
- submodule.to_linear_ordered_add_comm_group
- real.linear_ordered_add_comm_group
- filter.germ.linear_ordered_add_comm_group
- surreal.linear_ordered_add_comm_group
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), linear_ordered_add_comm_group_with_top.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), linear_ordered_add_comm_group_with_top.nsmul n.succ x = x + linear_ordered_add_comm_group_with_top.nsmul n x) . "try_refl_tac"
- add_comm : ∀ (a b : α), a + b = b + a
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c_1 : α), c_1 + a ≤ c_1 + b
- lt_of_add_lt_add_left : ∀ (a b c_1 : α), a + b < a + c_1 → b < c_1
- top : α
- le_top : ∀ (a : α), a ≤ ⊤
- top_add' : ∀ (x : α), ⊤ + x = ⊤
- neg : α → α
- sub : α → α → α
- sub_eq_add_neg : (∀ (a b : α), a - b = a + -b) . "try_refl_tac"
- gsmul : ℤ → α → α
- gsmul_zero' : (∀ (a : α), linear_ordered_add_comm_group_with_top.gsmul 0 a = 0) . "try_refl_tac"
- gsmul_succ' : (∀ (n : ℕ) (a : α), linear_ordered_add_comm_group_with_top.gsmul (int.of_nat n.succ) a = a + linear_ordered_add_comm_group_with_top.gsmul (int.of_nat n) a) . "try_refl_tac"
- gsmul_neg' : (∀ (n : ℕ) (a : α), linear_ordered_add_comm_group_with_top.gsmul -[1+ n] a = -linear_ordered_add_comm_group_with_top.gsmul ↑(n.succ) a) . "try_refl_tac"
- exists_pair_ne : ∃ (x y : α), x ≠ y
- neg_top : -⊤ = ⊤
- add_neg_cancel : ∀ (a : α), a ≠ ⊤ → a + -a = 0
A linearly ordered commutative monoid with an additively absorbing ⊤
element.
Instances should include number systems with an infinite element adjoined.`
- mul : α → α → α
- mul_assoc : ∀ (a b c_1 : α), (a * b) * c_1 = a * b * c_1
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), linear_ordered_comm_group.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), linear_ordered_comm_group.npow n.succ x = x * linear_ordered_comm_group.npow n x) . "try_refl_tac"
- inv : α → α
- div : α → α → α
- div_eq_mul_inv : (∀ (a b : α), a / b = a * b⁻¹) . "try_refl_tac"
- gpow : ℤ → α → α
- gpow_zero' : (∀ (a : α), linear_ordered_comm_group.gpow 0 a = 1) . "try_refl_tac"
- gpow_succ' : (∀ (n : ℕ) (a : α), linear_ordered_comm_group.gpow (int.of_nat n.succ) a = a * linear_ordered_comm_group.gpow (int.of_nat n) a) . "try_refl_tac"
- gpow_neg' : (∀ (n : ℕ) (a : α), linear_ordered_comm_group.gpow -[1+ n] a = (linear_ordered_comm_group.gpow ↑(n.succ) a)⁻¹) . "try_refl_tac"
- mul_left_inv : ∀ (a : α), a⁻¹ * a = 1
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c_1 : α), a ≤ b → b ≤ c_1 → a ≤ c_1
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c_1 : α), c_1 * a ≤ c_1 * b
A linearly ordered commutative group is a commutative group with a linear order in which multiplication is monotone.
Equations
- linear_ordered_comm_group.to_ordered_comm_group = {mul := linear_ordered_comm_group.mul _inst_1, mul_assoc := _, one := linear_ordered_comm_group.one _inst_1, one_mul := _, mul_one := _, npow := linear_ordered_comm_group.npow _inst_1, npow_zero' := _, npow_succ' := _, inv := linear_ordered_comm_group.inv _inst_1, div := linear_ordered_comm_group.div _inst_1, div_eq_mul_inv := _, gpow := linear_ordered_comm_group.gpow _inst_1, gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := linear_ordered_comm_group.le _inst_1, lt := linear_ordered_comm_group.lt _inst_1, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Equations
- linear_ordered_comm_group.to_linear_ordered_cancel_comm_monoid = {mul := linear_ordered_comm_group.mul _inst_1, mul_assoc := _, mul_left_cancel := _, one := linear_ordered_comm_group.one _inst_1, one_mul := _, mul_one := _, npow := linear_ordered_comm_group.npow _inst_1, npow_zero' := _, npow_succ' := _, mul_comm := _, le := linear_ordered_comm_group.le _inst_1, lt := linear_ordered_comm_group.lt _inst_1, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _, le_of_mul_le_mul_left := _, le_total := _, decidable_le := linear_ordered_comm_group.decidable_le _inst_1, decidable_eq := linear_ordered_comm_group.decidable_eq _inst_1, decidable_lt := linear_ordered_comm_group.decidable_lt _inst_1, lt_of_mul_lt_mul_left := _}
Pullback a linear_ordered_comm_group
under an injective map.
Equations
- function.injective.linear_ordered_comm_group f hf one mul inv div = {mul := ordered_comm_group.mul (function.injective.ordered_comm_group f hf one mul inv div), mul_assoc := _, one := ordered_comm_group.one (function.injective.ordered_comm_group f hf one mul inv div), one_mul := _, mul_one := _, npow := ordered_comm_group.npow (function.injective.ordered_comm_group f hf one mul inv div), npow_zero' := _, npow_succ' := _, inv := ordered_comm_group.inv (function.injective.ordered_comm_group f hf one mul inv div), div := ordered_comm_group.div (function.injective.ordered_comm_group f hf one mul inv div), div_eq_mul_inv := _, gpow := ordered_comm_group.gpow (function.injective.ordered_comm_group f hf one mul inv div), gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := linear_order.le (linear_order.lift f hf), lt := linear_order.lt (linear_order.lift f hf), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (linear_order.lift f hf), decidable_eq := linear_order.decidable_eq (linear_order.lift f hf), decidable_lt := linear_order.decidable_lt (linear_order.lift f hf), mul_le_mul_left := _}
Pullback a linear_ordered_add_comm_group
under an injective map.
Equations
- with_top.linear_ordered_add_comm_group_with_top = {le := linear_ordered_add_comm_monoid_with_top.le with_top.linear_ordered_add_comm_monoid_with_top, lt := linear_ordered_add_comm_monoid_with_top.lt with_top.linear_ordered_add_comm_monoid_with_top, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_ordered_add_comm_monoid_with_top.decidable_le with_top.linear_ordered_add_comm_monoid_with_top, decidable_eq := linear_ordered_add_comm_monoid_with_top.decidable_eq with_top.linear_ordered_add_comm_monoid_with_top, decidable_lt := linear_ordered_add_comm_monoid_with_top.decidable_lt with_top.linear_ordered_add_comm_monoid_with_top, add := linear_ordered_add_comm_monoid_with_top.add with_top.linear_ordered_add_comm_monoid_with_top, add_assoc := _, zero := linear_ordered_add_comm_monoid_with_top.zero with_top.linear_ordered_add_comm_monoid_with_top, zero_add := _, add_zero := _, nsmul := linear_ordered_add_comm_monoid_with_top.nsmul with_top.linear_ordered_add_comm_monoid_with_top, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, add_le_add_left := _, lt_of_add_lt_add_left := _, top := linear_ordered_add_comm_monoid_with_top.top with_top.linear_ordered_add_comm_monoid_with_top, le_top := _, top_add' := _, neg := option.map (λ (a : α), -a), sub := sub_neg_monoid.sub._default linear_ordered_add_comm_monoid_with_top.add with_top.linear_ordered_add_comm_group_with_top._proof_16 linear_ordered_add_comm_monoid_with_top.zero with_top.linear_ordered_add_comm_group_with_top._proof_17 with_top.linear_ordered_add_comm_group_with_top._proof_18 linear_ordered_add_comm_monoid_with_top.nsmul with_top.linear_ordered_add_comm_group_with_top._proof_19 with_top.linear_ordered_add_comm_group_with_top._proof_20 (option.map (λ (a : α), -a)), sub_eq_add_neg := _, gsmul := sub_neg_monoid.gsmul._default linear_ordered_add_comm_monoid_with_top.add with_top.linear_ordered_add_comm_group_with_top._proof_22 linear_ordered_add_comm_monoid_with_top.zero with_top.linear_ordered_add_comm_group_with_top._proof_23 with_top.linear_ordered_add_comm_group_with_top._proof_24 linear_ordered_add_comm_monoid_with_top.nsmul with_top.linear_ordered_add_comm_group_with_top._proof_25 with_top.linear_ordered_add_comm_group_with_top._proof_26 (option.map (λ (a : α), -a)), gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, exists_pair_ne := _, neg_top := _, add_neg_cancel := _}
- add : α → α → α
- add_assoc : ∀ (a b c_1 : α), a + b + c_1 = a + (b + c_1)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), nonneg_add_comm_group.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), nonneg_add_comm_group.nsmul n.succ x = x + nonneg_add_comm_group.nsmul n x) . "try_refl_tac"
- neg : α → α
- sub : α → α → α
- sub_eq_add_neg : (∀ (a b : α), a - b = a + -b) . "try_refl_tac"
- gsmul : ℤ → α → α
- gsmul_zero' : (∀ (a : α), nonneg_add_comm_group.gsmul 0 a = 0) . "try_refl_tac"
- gsmul_succ' : (∀ (n : ℕ) (a : α), nonneg_add_comm_group.gsmul (int.of_nat n.succ) a = a + nonneg_add_comm_group.gsmul (int.of_nat n) a) . "try_refl_tac"
- gsmul_neg' : (∀ (n : ℕ) (a : α), nonneg_add_comm_group.gsmul -[1+ n] a = -nonneg_add_comm_group.gsmul ↑(n.succ) a) . "try_refl_tac"
- add_left_neg : ∀ (a : α), -a + a = 0
- add_comm : ∀ (a b : α), a + b = b + a
- nonneg : α → Prop
- pos : α → Prop
- pos_iff : (∀ (a : α), nonneg_add_comm_group.pos a ↔ nonneg_add_comm_group.nonneg a ∧ ¬nonneg_add_comm_group.nonneg (-a)) . "order_laws_tac"
- zero_nonneg : nonneg_add_comm_group.nonneg 0
- add_nonneg : ∀ {a b : α}, nonneg_add_comm_group.nonneg a → nonneg_add_comm_group.nonneg b → nonneg_add_comm_group.nonneg (a + b)
- nonneg_antisymm : ∀ {a : α}, nonneg_add_comm_group.nonneg a → nonneg_add_comm_group.nonneg (-a) → a = 0
This is not so much a new structure as a construction mechanism for ordered groups, by specifying only the "positive cone" of the group.
Equations
- nonneg_add_comm_group.to_ordered_add_comm_group = {add := nonneg_add_comm_group.add s, add_assoc := _, zero := nonneg_add_comm_group.zero s, zero_add := _, add_zero := _, nsmul := nonneg_add_comm_group.nsmul s, nsmul_zero' := _, nsmul_succ' := _, neg := nonneg_add_comm_group.neg s, sub := nonneg_add_comm_group.sub s, sub_eq_add_neg := _, gsmul := nonneg_add_comm_group.gsmul s, gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := λ (a b : α), nonneg_add_comm_group.nonneg (b - a), lt := λ (a b : α), nonneg_add_comm_group.pos (b - a), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
A nonneg_add_comm_group
is a linear_ordered_add_comm_group
if nonneg
is total and decidable.
Equations
- nonneg_add_comm_group.to_linear_ordered_add_comm_group nonneg_total = {add := ordered_add_comm_group.add nonneg_add_comm_group.to_ordered_add_comm_group, add_assoc := _, zero := ordered_add_comm_group.zero nonneg_add_comm_group.to_ordered_add_comm_group, zero_add := _, add_zero := _, nsmul := ordered_add_comm_group.nsmul nonneg_add_comm_group.to_ordered_add_comm_group, nsmul_zero' := _, nsmul_succ' := _, neg := ordered_add_comm_group.neg nonneg_add_comm_group.to_ordered_add_comm_group, sub := ordered_add_comm_group.sub nonneg_add_comm_group.to_ordered_add_comm_group, sub_eq_add_neg := _, gsmul := ordered_add_comm_group.gsmul nonneg_add_comm_group.to_ordered_add_comm_group, gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := has_le.le (preorder.to_has_le α), lt := has_lt.lt (preorder.to_has_lt α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := λ (a b : α), _inst_1 (b - a), decidable_eq := linear_order.decidable_eq._default has_le.le has_lt.lt nonneg_add_comm_group.to_linear_ordered_add_comm_group._proof_17 nonneg_add_comm_group.to_linear_ordered_add_comm_group._proof_18 nonneg_add_comm_group.to_linear_ordered_add_comm_group._proof_19 nonneg_add_comm_group.to_linear_ordered_add_comm_group._proof_20 (λ (a b : α), _inst_1 (b - a)), decidable_lt := λ (a b : α), decidable_lt_of_decidable_le a b, add_le_add_left := _}
Equations
- order_dual.ordered_add_comm_group = {add := ordered_add_comm_monoid.add order_dual.ordered_add_comm_monoid, add_assoc := _, zero := ordered_add_comm_monoid.zero order_dual.ordered_add_comm_monoid, zero_add := _, add_zero := _, nsmul := ordered_add_comm_monoid.nsmul order_dual.ordered_add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg (show add_comm_group α, from ordered_add_comm_group.to_add_comm_group α), sub := λ (a b : order_dual α), a - b, sub_eq_add_neg := _, gsmul := add_comm_group.gsmul (show add_comm_group α, from ordered_add_comm_group.to_add_comm_group α), gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := ordered_add_comm_monoid.le order_dual.ordered_add_comm_monoid, lt := ordered_add_comm_monoid.lt order_dual.ordered_add_comm_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
Equations
- order_dual.linear_ordered_add_comm_group = {add := add_comm_group.add (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), add_assoc := _, zero := add_comm_group.zero (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), sub := add_comm_group.sub (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), sub_eq_add_neg := _, gsmul := add_comm_group.gsmul (show add_comm_group α, from linear_ordered_add_comm_group.to_add_comm_group α), gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := linear_order.le (order_dual.linear_order α), lt := linear_order.lt (order_dual.linear_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (order_dual.linear_order α), decidable_eq := linear_order.decidable_eq (order_dual.linear_order α), decidable_lt := linear_order.decidable_lt (order_dual.linear_order α), add_le_add_left := _}
Equations
- prod.ordered_comm_group = {mul := comm_group.mul prod.comm_group, mul_assoc := _, one := comm_group.one prod.comm_group, one_mul := _, mul_one := _, npow := comm_group.npow prod.comm_group, npow_zero' := _, npow_succ' := _, inv := comm_group.inv prod.comm_group, div := comm_group.div prod.comm_group, div_eq_mul_inv := _, gpow := comm_group.gpow prod.comm_group, gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := partial_order.le (prod.partial_order G H), lt := partial_order.lt (prod.partial_order G H), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Equations
- multiplicative.ordered_comm_group = {mul := comm_group.mul multiplicative.comm_group, mul_assoc := _, one := comm_group.one multiplicative.comm_group, one_mul := _, mul_one := _, npow := comm_group.npow multiplicative.comm_group, npow_zero' := _, npow_succ' := _, inv := comm_group.inv multiplicative.comm_group, div := comm_group.div multiplicative.comm_group, div_eq_mul_inv := _, gpow := comm_group.gpow multiplicative.comm_group, gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := ordered_comm_monoid.le multiplicative.ordered_comm_monoid, lt := ordered_comm_monoid.lt multiplicative.ordered_comm_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Equations
- additive.ordered_add_comm_group = {add := add_comm_group.add additive.add_comm_group, add_assoc := _, zero := add_comm_group.zero additive.add_comm_group, zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul additive.add_comm_group, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg additive.add_comm_group, sub := add_comm_group.sub additive.add_comm_group, sub_eq_add_neg := _, gsmul := add_comm_group.gsmul additive.add_comm_group, gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := ordered_add_comm_monoid.le additive.ordered_add_comm_monoid, lt := ordered_add_comm_monoid.lt additive.ordered_add_comm_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
Equations
- multiplicative.linear_ordered_comm_group = {mul := ordered_comm_group.mul multiplicative.ordered_comm_group, mul_assoc := _, one := ordered_comm_group.one multiplicative.ordered_comm_group, one_mul := _, mul_one := _, npow := ordered_comm_group.npow multiplicative.ordered_comm_group, npow_zero' := _, npow_succ' := _, inv := ordered_comm_group.inv multiplicative.ordered_comm_group, div := ordered_comm_group.div multiplicative.ordered_comm_group, div_eq_mul_inv := _, gpow := ordered_comm_group.gpow multiplicative.ordered_comm_group, gpow_zero' := _, gpow_succ' := _, gpow_neg' := _, mul_left_inv := _, mul_comm := _, le := linear_order.le multiplicative.linear_order, lt := linear_order.lt multiplicative.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le multiplicative.linear_order, decidable_eq := linear_order.decidable_eq multiplicative.linear_order, decidable_lt := linear_order.decidable_lt multiplicative.linear_order, mul_le_mul_left := _}
Equations
- additive.linear_ordered_add_comm_group = {add := ordered_add_comm_group.add additive.ordered_add_comm_group, add_assoc := _, zero := ordered_add_comm_group.zero additive.ordered_add_comm_group, zero_add := _, add_zero := _, nsmul := ordered_add_comm_group.nsmul additive.ordered_add_comm_group, nsmul_zero' := _, nsmul_succ' := _, neg := ordered_add_comm_group.neg additive.ordered_add_comm_group, sub := ordered_add_comm_group.sub additive.ordered_add_comm_group, sub_eq_add_neg := _, gsmul := ordered_add_comm_group.gsmul additive.ordered_add_comm_group, gsmul_zero' := _, gsmul_succ' := _, gsmul_neg' := _, add_left_neg := _, add_comm := _, le := linear_order.le additive.linear_order, lt := linear_order.lt additive.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le additive.linear_order, decidable_eq := linear_order.decidable_eq additive.linear_order, decidable_lt := linear_order.decidable_lt additive.linear_order, add_le_add_left := _}