Coprime elements of a ring #
Main definitions #
is_coprime x y
: thatx
andy
are coprime, defined to be the existence ofa
andb
such thata * x + b * y = 1
. Note that elements with no common divisors are not necessarily coprime, e.g., the multivariate polynomialsx₁
andx₂
are not coprime.
@[simp]
The proposition that x
and y
are coprime, defined to be the existence of a
and b
such
that a * x + b * y = 1
. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials x₁
and x₂
are not coprime.
theorem
is_coprime.symm
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y) :
is_coprime y x
theorem
is_coprime.dvd_of_dvd_mul_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x z)
(H2 : x ∣ y * z) :
x ∣ y
theorem
is_coprime.dvd_of_dvd_mul_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x y)
(H2 : x ∣ y * z) :
x ∣ z
theorem
is_coprime.mul_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x z)
(H2 : is_coprime y z) :
is_coprime (x * y) z
theorem
is_coprime.mul_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x y)
(H2 : is_coprime x z) :
is_coprime x (y * z)
theorem
is_coprime.prod_left
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I} :
(∀ (i : I), i ∈ t → is_coprime (s i) x) → is_coprime (∏ (i : I) in t, s i) x
theorem
is_coprime.prod_right
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I} :
(∀ (i : I), i ∈ t → is_coprime x (s i)) → is_coprime x (∏ (i : I) in t, s i)
theorem
is_coprime.mul_dvd
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x y)
(H1 : x ∣ z)
(H2 : y ∣ z) :
theorem
finset.prod_dvd_of_coprime
{R : Type u}
[comm_semiring R]
{z : R}
{I : Type v}
{s : I → R}
{t : finset I}
(Hs : ↑t.pairwise_on (is_coprime on s))
(Hs1 : ∀ (i : I), i ∈ t → s i ∣ z) :
∏ (x : I) in t, s x ∣ z
theorem
fintype.prod_dvd_of_coprime
{R : Type u}
[comm_semiring R]
{z : R}
{I : Type v}
{s : I → R}
[fintype I]
(Hs : pairwise (is_coprime on s))
(Hs1 : ∀ (i : I), s i ∣ z) :
∏ (x : I), s x ∣ z
theorem
is_coprime.of_mul_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime (x * y) z) :
is_coprime x z
theorem
is_coprime.of_mul_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime (x * y) z) :
is_coprime y z
theorem
is_coprime.of_mul_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x (y * z)) :
is_coprime x y
theorem
is_coprime.of_mul_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x (y * z)) :
is_coprime x z
theorem
is_coprime.mul_left_iff
{R : Type u}
[comm_semiring R]
{x y z : R} :
is_coprime (x * y) z ↔ is_coprime x z ∧ is_coprime y z
theorem
is_coprime.mul_right_iff
{R : Type u}
[comm_semiring R]
{x y z : R} :
is_coprime x (y * z) ↔ is_coprime x y ∧ is_coprime x z
theorem
is_coprime.prod_left_iff
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I} :
is_coprime (∏ (i : I) in t, s i) x ↔ ∀ (i : I), i ∈ t → is_coprime (s i) x
theorem
is_coprime.prod_right_iff
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I} :
is_coprime x (∏ (i : I) in t, s i) ↔ ∀ (i : I), i ∈ t → is_coprime x (s i)
theorem
is_coprime.of_prod_left
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I}
(H1 : is_coprime (∏ (i : I) in t, s i) x)
(i : I)
(hit : i ∈ t) :
is_coprime (s i) x
theorem
is_coprime.of_prod_right
{R : Type u}
[comm_semiring R]
{x : R}
{I : Type v}
{s : I → R}
{t : finset I}
(H1 : is_coprime x (∏ (i : I) in t, s i))
(i : I)
(hit : i ∈ t) :
is_coprime x (s i)
theorem
is_coprime.pow_left
{R : Type u}
[comm_semiring R]
{x y : R}
{m : ℕ}
(H : is_coprime x y) :
is_coprime (x ^ m) y
theorem
is_coprime.pow_right
{R : Type u}
[comm_semiring R]
{x y : R}
{n : ℕ}
(H : is_coprime x y) :
is_coprime x (y ^ n)
theorem
is_coprime.pow
{R : Type u}
[comm_semiring R]
{x y : R}
{m n : ℕ}
(H : is_coprime x y) :
is_coprime (x ^ m) (y ^ n)
theorem
is_coprime.is_unit_of_dvd
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y)
(d : x ∣ y) :
is_unit x
theorem
is_coprime.map
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y)
{S : Type v}
[comm_semiring S]
(f : R →+* S) :
is_coprime (⇑f x) (⇑f y)
theorem
is_coprime.of_add_mul_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (x + y * z) y) :
is_coprime x y
theorem
is_coprime.of_add_mul_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (x + z * y) y) :
is_coprime x y
theorem
is_coprime.of_add_mul_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (y + x * z)) :
is_coprime x y
theorem
is_coprime.of_add_mul_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (y + z * x)) :
is_coprime x y
theorem
is_coprime.of_mul_add_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (y * z + x) y) :
is_coprime x y
theorem
is_coprime.of_mul_add_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (z * y + x) y) :
is_coprime x y
theorem
is_coprime.of_mul_add_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (x * z + y)) :
is_coprime x y
theorem
is_coprime.of_mul_add_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (z * x + y)) :
is_coprime x y
theorem
is_coprime.add_mul_left_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (x + y * z) y
theorem
is_coprime.add_mul_right_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (x + z * y) y
theorem
is_coprime.add_mul_left_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (y + x * z)
theorem
is_coprime.add_mul_right_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (y + z * x)
theorem
is_coprime.mul_add_left_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (y * z + x) y
theorem
is_coprime.mul_add_right_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (z * y + x) y
theorem
is_coprime.mul_add_left_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (x * z + y)
theorem
is_coprime.mul_add_right_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (z * x + y)
theorem
is_coprime.add_mul_left_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (x + y * z) y ↔ is_coprime x y
theorem
is_coprime.add_mul_right_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (x + z * y) y ↔ is_coprime x y
theorem
is_coprime.add_mul_left_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (y + x * z) ↔ is_coprime x y
theorem
is_coprime.add_mul_right_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (y + z * x) ↔ is_coprime x y
theorem
is_coprime.mul_add_left_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (y * z + x) y ↔ is_coprime x y
theorem
is_coprime.mul_add_right_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (z * y + x) y ↔ is_coprime x y
theorem
is_coprime.mul_add_left_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (x * z + y) ↔ is_coprime x y
theorem
is_coprime.mul_add_right_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (z * x + y) ↔ is_coprime x y