The constant functor #
const J : C ā„¤ (J ā„¤ C)
is the functor that sends an object X : C
to the functor J ā„¤ C
sending
every object in J
to X
, and every morphism to š X
.
When J
is nonempty, const
is faithful.
We have (const J).obj X ā F ā
(const J).obj (F.obj X)
for any F : C ā„¤ D
.
The functor sending X : C
to the constant functor J ā„¤ C
sending everything to X
.
The contant functor Jįµįµ ā„¤ Cįµįµ
sending everything to op X
is (naturally isomorphic to) the opposite of the constant functor J ā„¤ C
sending everything to X
.
Equations
- category_theory.functor.const.op_obj_op X = {hom := {app := Ī» (j : Jįµįµ), š (((category_theory.functor.const Jįµįµ).obj (opposite.op X)).obj j), naturality' := _}, inv := {app := Ī» (j : Jįµįµ), š (((category_theory.functor.const J).obj X).op.obj j), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
The contant functor Jįµįµ ā„¤ C
sending everything to unop X
is (naturally isomorphic to) the opposite of
the constant functor J ā„¤ Cįµįµ
sending everything to X
.
Equations
- category_theory.functor.const.op_obj_unop X = {hom := {app := Ī» (j : Jįµįµ), š (((category_theory.functor.const Jįµįµ).obj (opposite.unop X)).obj j), naturality' := _}, inv := {app := Ī» (j : Jįµįµ), š (((category_theory.functor.const J).obj X).left_op.obj j), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
These are actually equal, of course, but not definitionally equal (the equality requires F.map (š _) = š _). A natural isomorphism is more convenient than an equality between functors (compare id_to_iso).
Equations
- category_theory.functor.const_comp J X F = {hom := {app := Ī» (_x : J), š (((category_theory.functor.const J).obj X ā F).obj _x), naturality' := _}, inv := {app := Ī» (_x : J), š (((category_theory.functor.const J).obj (F.obj X)).obj _x), naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
If J
is nonempty, then the constant functor over J
is faithful.