Lebesgue measure on the real line and on ℝⁿ
#
Preliminary definitions #
Length of an interval. This is the largest monotonic function which correctly measures all intervals.
Equations
- measure_theory.lebesgue_length s = ⨅ (a b : ℝ) (h : s ⊆ set.Ico a b), ennreal.of_real (b - a)
@[simp]
theorem
measure_theory.lebesgue_length_Ico
(a b : ℝ) :
measure_theory.lebesgue_length (set.Ico a b) = ennreal.of_real (b - a)
theorem
measure_theory.lebesgue_length_eq_infi_Ioo
(s : set ℝ) :
measure_theory.lebesgue_length s = ⨅ (a b : ℝ) (h : s ⊆ set.Ioo a b), ennreal.of_real (b - a)
@[simp]
theorem
measure_theory.lebesgue_length_Ioo
(a b : ℝ) :
measure_theory.lebesgue_length (set.Ioo a b) = ennreal.of_real (b - a)
theorem
measure_theory.lebesgue_length_eq_infi_Icc
(s : set ℝ) :
measure_theory.lebesgue_length s = ⨅ (a b : ℝ) (h : s ⊆ set.Icc a b), ennreal.of_real (b - a)
@[simp]
theorem
measure_theory.lebesgue_length_Icc
(a b : ℝ) :
measure_theory.lebesgue_length (set.Icc a b) = ennreal.of_real (b - a)
The Lebesgue outer measure, as an outer measure of ℝ.
theorem
measure_theory.lebesgue_length_subadditive
{a b : ℝ}
{c d : ℕ → ℝ}
(ss : set.Icc a b ⊆ ⋃ (i : ℕ), set.Ioo (c i) (d i)) :
ennreal.of_real (b - a) ≤ ∑' (i : ℕ), ennreal.of_real (d i - c i)
@[simp]
theorem
measure_theory.lebesgue_outer_Icc
(a b : ℝ) :
⇑measure_theory.lebesgue_outer (set.Icc a b) = ennreal.of_real (b - a)
@[simp]
@[simp]
theorem
measure_theory.lebesgue_outer_Ico
(a b : ℝ) :
⇑measure_theory.lebesgue_outer (set.Ico a b) = ennreal.of_real (b - a)
@[simp]
theorem
measure_theory.lebesgue_outer_Ioo
(a b : ℝ) :
⇑measure_theory.lebesgue_outer (set.Ioo a b) = ennreal.of_real (b - a)
@[simp]
theorem
measure_theory.lebesgue_outer_Ioc
(a b : ℝ) :
⇑measure_theory.lebesgue_outer (set.Ioc a b) = ennreal.of_real (b - a)
Definition of the Lebesgue measure and lengths of intervals #
@[protected, instance]
Lebesgue measure on the Borel sets
The outer Lebesgue measure is the completion of this measure. (TODO: proof this)
Equations
- measure_theory.real.measure_space = {to_measurable_space := real.measurable_space, volume := {to_outer_measure := measure_theory.lebesgue_outer, m_Union := measure_theory.real.measure_space._proof_1, trimmed := measure_theory.lebesgue_outer_trim}}
@[protected, instance]
@[simp]
theorem
real.volume_Ico
{a b : ℝ} :
⇑measure_theory.measure_space.volume (set.Ico a b) = ennreal.of_real (b - a)
@[simp]
theorem
real.volume_Icc
{a b : ℝ} :
⇑measure_theory.measure_space.volume (set.Icc a b) = ennreal.of_real (b - a)
@[simp]
theorem
real.volume_Ioo
{a b : ℝ} :
⇑measure_theory.measure_space.volume (set.Ioo a b) = ennreal.of_real (b - a)
@[simp]
theorem
real.volume_Ioc
{a b : ℝ} :
⇑measure_theory.measure_space.volume (set.Ioc a b) = ennreal.of_real (b - a)
@[simp]
theorem
real.volume_interval
{a b : ℝ} :
⇑measure_theory.measure_space.volume (set.interval a b) = ennreal.of_real (abs (b - a))
@[simp]
@[simp]
@[simp]
@[simp]
@[protected, instance]
Volume of a box in ℝⁿ
#
theorem
real.volume_Icc_pi
{ι : Type u_1}
[fintype ι]
{a b : ι → ℝ} :
⇑measure_theory.measure_space.volume (set.Icc a b) = ∏ (i : ι), ennreal.of_real (b i - a i)
theorem
real.volume_pi_Ioo
{ι : Type u_1}
[fintype ι]
{a b : ι → ℝ} :
⇑measure_theory.measure_space.volume (set.univ.pi (λ (i : ι), set.Ioo (a i) (b i))) = ∏ (i : ι), ennreal.of_real (b i - a i)
theorem
real.volume_pi_Ioc
{ι : Type u_1}
[fintype ι]
{a b : ι → ℝ} :
⇑measure_theory.measure_space.volume (set.univ.pi (λ (i : ι), set.Ioc (a i) (b i))) = ∏ (i : ι), ennreal.of_real (b i - a i)
theorem
real.volume_pi_Ico
{ι : Type u_1}
[fintype ι]
{a b : ι → ℝ} :
⇑measure_theory.measure_space.volume (set.univ.pi (λ (i : ι), set.Ico (a i) (b i))) = ∏ (i : ι), ennreal.of_real (b i - a i)
Images of the Lebesgue measure under translation/multiplication/... #
theorem
real.smul_map_volume_mul_right
{a : ℝ}
(h : a ≠ 0) :
ennreal.of_real (abs a) • ⇑(measure_theory.measure.map (λ (_x : ℝ), _x * a)) measure_theory.measure_space.volume = measure_theory.measure_space.volume
theorem
real.map_volume_mul_right
{a : ℝ}
(h : a ≠ 0) :
⇑(measure_theory.measure.map (λ (_x : ℝ), _x * a)) measure_theory.measure_space.volume = ennreal.of_real (abs a⁻¹) • measure_theory.measure_space.volume
theorem
filter.eventually.volume_pos_of_nhds_real
{p : ℝ → Prop}
{a : ℝ}
(h : ∀ᶠ (x : ℝ) in 𝓝 a, p x) :
0 < ⇑measure_theory.measure_space.volume {x : ℝ | p x}
theorem
region_between_subset
{α : Type u_1}
(f g : α → ℝ)
(s : set α) :
region_between f g s ⊆ s.prod set.univ
theorem
measurable_set_region_between
{α : Type u_1}
[measurable_space α]
{f g : α → ℝ}
{s : set α}
(hf : measurable f)
(hg : measurable g)
(hs : measurable_set s) :
measurable_set (region_between f g s)
The region between two measurable functions on a measurable set is measurable.
theorem
volume_region_between_eq_lintegral'
{α : Type u_1}
[measurable_space α]
{μ : measure_theory.measure α}
{f g : α → ℝ}
{s : set α}
(hf : measurable f)
(hg : measurable g)
(hs : measurable_set s) :
⇑(μ.prod measure_theory.measure_space.volume) (region_between f g s) = ∫⁻ (y : α) in s, ennreal.of_real ((g - f) y) ∂μ
theorem
volume_region_between_eq_lintegral
{α : Type u_1}
[measurable_space α]
{μ : measure_theory.measure α}
{f g : α → ℝ}
{s : set α}
[measure_theory.sigma_finite μ]
(hf : ae_measurable f (μ.restrict s))
(hg : ae_measurable g (μ.restrict s))
(hs : measurable_set s) :
⇑(μ.prod measure_theory.measure_space.volume) (region_between f g s) = ∫⁻ (y : α) in s, ennreal.of_real ((g - f) y) ∂μ
The volume of the region between two almost everywhere measurable functions on a measurable set can be represented as a Lebesgue integral.
theorem
volume_region_between_eq_integral'
{α : Type u_1}
[measurable_space α]
{μ : measure_theory.measure α}
{f g : α → ℝ}
{s : set α}
[measure_theory.sigma_finite μ]
(f_int : measure_theory.integrable_on f s μ)
(g_int : measure_theory.integrable_on g s μ)
(hs : measurable_set s)
(hfg : f ≤ᵐ[μ.restrict s] g) :
⇑(μ.prod measure_theory.measure_space.volume) (region_between f g s) = ennreal.of_real (∫ (y : α) in s, (g - f) y ∂μ)
theorem
volume_region_between_eq_integral
{α : Type u_1}
[measurable_space α]
{μ : measure_theory.measure α}
{f g : α → ℝ}
{s : set α}
[measure_theory.sigma_finite μ]
(f_int : measure_theory.integrable_on f s μ)
(g_int : measure_theory.integrable_on g s μ)
(hs : measurable_set s)
(hfg : ∀ (x : α), x ∈ s → f x ≤ g x) :
⇑(μ.prod measure_theory.measure_space.volume) (region_between f g s) = ennreal.of_real (∫ (y : α) in s, (g - f) y ∂μ)
If two functions are integrable on a measurable set, and one function is less than or equal to the other on that set, then the volume of the region between the two functions can be represented as an integral.