Lectures & Readings

Most course readings are taken from Machine Learning: A Probabilistic Perspective (MLaPP), a draft textbook in preparation by Prof. Kevin Murphy. The first chapter is freely available online. Later chapters will be distributed via a pair of readers available from the Metcalf Copy Center.

The specific schedule of topics and readings below is tentative, and will change as the course progresses.

Date Topic Primary Readings Materials
1/26 Course Overview MLaPP: 1.1-1.3 slides
1/31 Probability: Discrete random variables
Dimensionality & model validation
MLaPP: 2.1-2.3
MLaPP: 1.4.1-1.4.4, 8.3.8
slides
2/02 Maximum likelihood & Bayesian learning
Naive Bayes classifiers
MLaPP: 3.1-3.2
MLaPP: 5.1-5.2
slides
2/07 Probability: Continuous random variables
Smoothing: Beta & Dirichlet priors
MLaPP: 2.4, 2.5.4
MLaPP: 3.3-3.5
slides
2/09 Bayesian decision theory & ROCs
Gaussian ML estimation
MLaPP: 8.1-8.2, 8.3.4
MLaPP: 1.4.5-1.4.6
slides
2/14 Decision theory & continuous estimation
Bayesian model selection
Directed graphical models
MLaPP: 8.2, 10.2
MLaPP: 1.4.7-1.4.9, 10.3
MLaPP: 9.1-9.2
slides
2/16 Multivariate Gaussian Distributions
Gaussian Classification
MLaPP: 2.5, 4.1-4.4.2
MLaPP: 5.3-5.3.1
slides
2/21 Brown Holiday: No Lecture
2/23 Linear Regression & Least Squares
Bayesian Linear Regression
MLaPP: 1.4.5-1.4.7
MLaPP: 6.2-6.3
slides
2/28 Gaussian Discriminant Analysis
Logistic Regression, Probit Regression
MLaPP: 5.3
MLaPP: 6.4, 7.4
slides
3/01 Logistic Regression
Gradient Descent, Newton's Method
MLaPP: 6.4
MLaPP: 6.4
slides
3/06 Logistic Regression: ML & MAP
Laplace Approximations
MLaPP: 6.4
MLaPP: 6.5
slides
3/08 Exponential Families MLaPP: 7.1-7.2
slides
3/13 Midterm Exam: In Class
3/15 Generalized Linear Models
Robust Linear Regression
Binary Feature Selection & Search
MLaPP: 7.3
MLaPP: 6.2.3
MLaPP: 13.2
slides
3/20 L1 Regularization & Sparsity MLaPP: 13.3-13.4 slides
3/22 Online Learning & Perceptrons
Kernel Methods
MLaPP: 6.6
MLaPP: 14.2, 14.4
slides
3/27 Spring Break: No Lecture
3/29 Spring Break: No Lecture
4/03 Gaussian Process Regression
Gaussian Process Classification, GLMs
MLaPP: 15.1, 15.2
MLaPP: 15.3
slides
4/05 Margins & Support Vector Machines MLaPP: 14.5
slides
4/10 Clustering & K-Means Algorithm
Probabilistic Mixture Models
MLaPP: 1.3, 11.2
MLaPP: 11.2, 11.3
slides
4/12 Graphical Models
EM for Mixture Models
MLaPP: 9.1, 9.2, 9.4
MLaPP: 11.2-11.4
slides
4/17 Expectation Maximization Algorithm MLaPP: 11.4 slides
4/19 Principal Components Analysis
Factor Analysis & Probabilistic PCA
MLaPP: 12.1-12.3 slides
4/24 EM Algorithm for Factor Analysis & PPCA MLaPP: 12.1-12.3 slides
4/26 Hidden Markov Models
Inference & Learning for HMMs
MLaPP: 17.1-17.3
MLaPP: 17.4-17.5
slides
5/01 Topic Models
Monte Carlo Methods
MLaPP: 27.3
MLaPP: 23.2, 23.4
slides
5/03 MCMC & Gibbs Samplers
Continuous State Space Models
MLaPP: 24.2
MLaPP: 18.1-18.3, 23.5
slides
5/08 Final Exam Review Session slides 1
slides 2
5/10 Graduate Project Presentations

Recitations

Date Topic Readings Materials
2/02 Matlab Tutorial YAGTOM Matlab
2/09 Continuous Bayesian Estimation MLaPP: 2.4, 3.3 demo
notes
2/16 Linear Algebra Tutorial Stanford CS229 notes
2/23 Multivariate Gaussians, Linear Regression MLaPP: 4, 6.2-6.3 demo
notes
3/01 Continuous Optimization MLaPP: 6.4 demo
notes
3/08 Midterm Review Session MLaPP: 1-6, 8, 10 slides 1
slides 2
3/15 No Recitation
3/22 Lagrange Multipliers Klein tutorial notes
3/29 No Recitation
4/05 Kernels MLaPP: 14 notes
4/12 EM Algorithm MLaPP: 11.4 notes
4/19 Markov Chains MLaPP: 17.2 Matlab
notes
4/26 Dynamic Programming, HMMs MLaPP: 17.4 notes
5/03 No Recitation