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Exponential Families of Distributions 

fixed vector of sufficient statistics (features), 
specifying the family of distributions 
unknown vector of natural parameters, 
determine particular distribution in this family 

φ(x) ∈ Rd

θ ∈ Θ

normalization constant or partition function, 
ensuring this is a valid probability distribution 
reference measure independent of parameters 
(for many models, we simply have                 ) h(x) = 1h(x) > 0

Z(θ) > 0

To ensure this construction is valid, we take 

Θ = {θ ∈ Rd | Z(θ) < ∞}



Examples of Exponential Families 

•! Bernoulli and binomial (2 classes) 
•! Categorical and multinomial (K classes) 

•! Scalar Gaussian 
•! Multivariate Gaussian 

•! Poisson 

•! Dirichlet and beta 
•! Gamma and exponential 
•! ! 

φ(x) = [I(x = 1), . . . , I(x = K − 1)]

φ(x) = I(x = 1) = x

φ(x) = [x, x2]

φ(x) = [x, xxT ]

h(x) =
1

x!
, φ(x) = x



Learning in Exponential Families 

•! For maximum likelihood estimation, we find the unique set 
of parameters which satisfy: 

•! Special cases we’ve seen:  Categorical, Gaussian, ! 

Eθ[φ(x)] =
1

N

N∑

i=1

φ(xi)

•! For Bayesian estimation, there are convenient properties: 
•! Except for a few “odd” exceptions, exponential families are 

the only distributions with conjugate priors 
•! Leads to more tractable posteriors and marginal likelihoods 
•! There is a simple formula for constructing these priors: 

Beta-Bernoulli, Dirichlet-categorical, Gaussian-Gaussian, ! 

∇θA(θ) = Eθ[φ(x)]



Generalized Linear Models 
•! General framework for modeling non-Gaussian data with 

linear prediction, using exponential families: 
•! Construct instance-specific natural parameters: 

•! Observation comes from exponential family: 

θi = wTφ(xi)

p(yi | xi, w) = exp {yiθi −A(θi)}

•! Special cases:  linear regression and logistic regression 
•! ML and MAP estimation is generally straightforward 
•! Many possible extensions: 
•! Multivariate responses with more parameters 

(biggest difficulty is notation and indexing) 
•! Link functions to allow more flexibility in how (w, xi) → θi



Gaussian Distribution 

•! Central limit theorem:  Property of (some) big datasets 
•! Flexibility:  Can capture arbitrary mean and covariance 
•! Convenience:  Quadratic log-likelihood easy to optimize 

!5

0

5

!5

0

5
0

0.05

0.1

0.15

0.2

Why the Gaussian distribution? 

Why consider non-Gaussian likelihoods? 
•! Data type:  Observations may not be continuous numbers 
•! Outliers:  Increase robustness to non-typical data 

Why consider non-Gaussian priors on parameters? 
•! Sparsity:  Allow selection of most important model features 



Laplace Distribution 
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Probability Densities Log Probability Densities 

Relative to Gaussian distributions with equal variance: 
•! Many samples are near zero 
•! Occasional large-magnitude samples are far more likely 
•! Negative log probability density is convex but not smooth 

Lap(x | µ, λ) = λ

2
exp(−λ|x− µ|)



Student T Distribution 
Probability Densities Log Probability Densities 

Relative to Gaussian distributions with equal variance: 
•! Approaches Gaussian as DOF parameter approaches infinity 
•! For small DOF, large-magnitude samples are far more likely 
•! Negative log probability density is smooth but not convex 
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Outliers & ML Estimation 

Maximum likelihood estimates of mean parameters: 
•! Gaussian:  Sample mean of data 
•! Laplacian:  Sample median of data 
•! Student T:  No closed form, optimize via gradient methods 
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Outliers & Linear Regression 
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Huber Loss Function 
Negative Log Probabilities 

Relative to Gaussian distributions with equal variance: 
•! Behaves like Gaussian near origin ( non-outliers ) 
•! Behaves like Laplacian far from origin (robustness) 
•! Negative log probability density is smooth and convex 
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Robust Linear Regression 



Regularization in Regression 

•! Basic model selection:  Coefficients are ordered,  
and only the first M are non-zero 
•! Classical example:  polynomial regression 
•! What if my features aren’t easy to interpret? 

•! Gaussian prior (L2 regularization):  Coefficients are small 
•! Computation & storage:  Expensive for many features 
•! Interpretability:  Doesn’t identify important features 

•! Many applications:  Only some of my features are 
relevant, but I don’t know how many or which ones 



Feature Selection Models 
γj = 1 if feature j is relevant, 0 otherwise

•! We would like a posterior distribution on feature inclusion: 

•! The likelihood              could be any standard ML model, 
constrained to only depend on features for which 

•! A common prior on the feature inclusion vector: 

                     

φj(x) ∈ R is some possible feature of input data

                    , 



Feature Selection: Example 

All combinations of 10 features 
(210 in Gray code order) 

Dataset:  N=10 samples based on linear regression weights 
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Feature Selection: Example 

Posterior Probabilities 

Dataset:  N=10 samples based on linear regression weights 
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Most likely models:   
{2}, {2,6}, {2,6,9}, {2,3,6}! 

Marginal Inclusion Probabilities 
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Feature Selection for Regression 
•! Bernoulli prior on feature inclusion indicators: 

•! Combine with Gaussian likelihood and weight vector prior: 

•! Negative log-posterior distribution: 

•! Simplifying in the limit as 
pick out subset  
of feature columns 
keep all columns but 
penalize non-zero weights 



Greedy Deterministic Search 

Forward Selection 

Backward Selection 

•! Consider all possible ways of adding (forward selection) or 
removing (backward selection) one feature 

•! Add or remove the best feature, or stop if the current model is best 
•! Wrapper method:  Can be applied to any objective.  Guarantees??? 


