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Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



Exponential Families of Distributions

p(x]0) = %h(x)exp[@r‘rq’)(x)] Z(0) = /mh(x)exp[0T¢(X)]dX

= h(x)expl0TP(x) ~ AB)]  AB) = logZ(6)
0 ( x) c Rd fixed vector of sufficient stafistics (features),
specifying the family of distributions

HcO unknown vector of natural parameters,
determine particular distribution in this family

normalization constant or partition function,
Z(0) >0 — nsuring this is a valid probability distribution

h 0 — reference measure independent of parameters
(ZE’) > (for many models, we simply have h(xz) =1)

To ensure this construction is valid, we take

O={0cR"| Z(h) < 0}



Examples of Exponential Families

p(x]0) = %@h(}() exp[0” ¢ (x)] Z(0) = /m h(x) exp[@’ ¢p(x)]|dx
= h(x)expl0’ ¢p(x) — A(0)] A(B) = logZ(0)
« Bernoulli and binomial (2 classes) d(x)=Llz=1)=x

« Categorical and multinomial (K classes)
b(x) = [[(x=1),...,I(z = K — 1)

« Scalar Gaussian P(x) = [957372:

 Multivariate Gaussian o(x) = [z, zx!]
. Poi 1

Poisson h(z) = —, o(x) =z
x!

» Dirichlet and beta
« Gamma and exponential



Learning in Exponential Families

p(x]0) = %h(x)exp[@r‘ﬁd)(x)] Z(0) = /mh(x)exp[0T¢(X)]dx

— h(x)expl”p(x) — A(B)]  A(B) = logZ(6)

 For maximum likelihood estimation, we find the unique set
of parameters which satisfy:

Bolo(e)] = 1 D 0@)  VeA(B) = Eg[p(w)

« Special cases we’ve seen: Categorical, Gaussian, ...

 For Bayesian estimation, there are convenient properties:
« Except for a few “odd” exceptions, exponential families are
the only distributions with conjugate priors
» Leads to more tractable posteriors and marginal likelihoods
« There is a simple formula for constructing these priors:
Beta-Bernoulli, Dirichlet-categorical, Gaussian-Gaussian, ...



Generalized Linear Models

General framework for modeling non-Gaussian data with
linear prediction, using exponential families:
» Construct instance-specific natural parameters:

0; = wT¢($i)

* QObservation comes from exponential family:
p(yi | xi,w) = exp{yith — A(0:)}

Special cases: linear regression and logistic regression
ML and MAP estimation is generally straightforward
Many possible extensions:
* Multivariate responses with more parameters
(biggest difficulty is notation and indexing)
» Link functions to allow more flexibility in how (w,z;) — 6;



Gaussian Dist(jbution
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Why the Gaussian distribution?

« Central limit theorem: Property of (some) big datasets
» Flexibility: Can capture arbitrary mean and covariance
» Convenience: Quadratic log-likelihood easy to optimize

Why consider non-Gaussian likelihoods?

» Data type: Observations may not be continuous numbers
» Quitliers: Increase robustness to non-typical data

Why consider non-Gaussian priors on parameters?
« Sparsity: Allow selection of most important model features
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Laplace Distribution

A
Lap(z | p, A) = 5 exp(=Alx — pl)

Relative to Gaussian distributions with equal variance:
 Many samples are near zero
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« Occasional large-magnitude samples are far more likely
* Negative log probability density is convex but not smooth



Student T Distribution
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Relative to Gaussian distributions with equal variance:

« Approaches Gaussian as DOF parameter approaches infinity
* For small DOF, large-magnitude samples are far more likely
* Negative log probability density is smooth but not convex



Outliers & ML Estimation

051
= = = = ggussian = = = = gaussian
e student T m—— student T
= == gplace = == [gplace

Maximum likelihood estimates of mean parameters:

« Gaussian: Sample mean of data

« Laplacian: Sample median of data

« Student T: No closed form, optimize via gradient methods



Outliers & Linear Regression
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Huber Loss Function

B r? /2 if |r| <9
L (r,0) = {6|r\—52/2 if |r| >0
Negative Log Probabilities Robust Linear Regression

= = = = | east Squares
== == Hyber loss 1.0
m— Huber loss 5.0

> » 0 1 > s % 02 04 06 0.8 1
Relative to Gaussian distributions with equal variance:
« Behaves like Gaussian near origin (“non-outliers™)
« Behaves like Laplacian far from origin (robustness)

* Negative log probability density is smooth and convex



Regularization in Regression

v

« Basic model selection: Coefficients are ordered,
and only the first M are non-zero
 Classical example: polynomial regression
* What if my features aren’t easy to interpret?
» Gaussian prior (L, regularization): Coefficients are small
« Computation & storage: Expensive for many features
* Interpretability: Doesn’t identify important features
« Many applications: Only some of my features are
relevant, but | don’t know how many or which ones



Feature Selection Models

¢;(x) € R is some possible feature of input data
v; = 1 if feature j is relevant, O otherwise
We would like a posterior distribution on feature inclusion:
e—f(Y)
> e f)
The likelihood p(D|v) could be any standard ML model,

constrained to only depend on features for which 7; = 1
A common prior on the feature inclusion vector:

p(v|D) = f(v) £ —[log p(D|y) + log p(7)]

D
p(v) = [ Ber(y;lmo) = mh "o (1 — mg) P11l ¥llo = 32717
j=1
log p(v|m0) = ||vllologmo + (D — [|v]]o) log(1 — 7o)
= —)\||7v||lo + const

A £ log 1210

1
0



Feature Selection: Example

log p(model, data)
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All combinations of 10 features Log posterior probabilities

(270 in Gray code order) MAP: 4 = argmax p(+|D) = argmin f(v)

Dataset: N=10 samples based on linear regression weights
w = (0.00,—1.67,0.13,0.00,0.00,1.19,0.00, —0.04, 0.33,0.00)



Feature Selection: Example

p(model|data) p(gammay(j)|data
O. 1 U T T T T T 1 T T T T T

0.09 ¢ 109t
0.08 1 081
0.07 | 1 0.7
0.06 | 1 061
0.05 1 05
0.04 ¢ 104t
0.03 | 1 031
0.02r | P 1 0.2
0.01® 101 .
0(; 200 400 600 800 1000 0 1 2 3 4 5 6 7 8 9 1.0
Posterior Probabilities Marginal Inclusion Probabilities
Most likely models: 5 ={j:p(y; =1|D) > 0.5}

{2}, {2,6}, {2,6,9}, {2,3,6}...
Dataset: N=10 samples based on linear regression weights
w = (0.00,—1.67,0.13,0.00,0.00,1.19,0.00, —0.04, 0.33,0.00)



Feature Selection for Regression

« Bernoulli prior on feature inclusion indicators:

D
D
p(v) = [ ] Ber(yjlmo) = my ™! (1 — mo) P~ Ivllo = 325217
j=1

« Combine with Gaussian likelihood and weight vector prior:
yi‘XZ‘,W,’Y,O'z ~ N(Z’YJ’UJ].SEZ],OQ) w] ~ N(O?O-'?U)
J

* Negative log-posterior distribution:

2
0}
Floy,w) £ 20 log p(y, w, y1X) = [ly = X(3. x w)|| + Z-|[wi[* + Alllo + cons

w

. Simplifying in the limitas o2, — o©

ick out subset
FOorw) = Iy =Xyws B+ Avllo Sffeature colamns
f(W) _ Hy . XWH% 1+ )\HWHO keep all columns but

penalize non-zero weights



Greedy Deterministic Search

Backward Selection
{1,2,3,4}

{1,2,3} {2,3,4} {1,3,4} {1,2,4}

{1,2}  {1,3} {14} {2,3} {2,4} {3.4}
Uy 2y 8y W

U

Forward Selection

» Consider all possible ways of adding (forward selection) or
removing (backward selection) one feature

* Add or remove the best feature, or stop if the current model is best

* Wrapper method: Can be applied to any objective. Guarantees???



