Expectation Maximization Notes

A general technique for finding ML solutions for latent variable models.

Consider a model where x is observed

θ are parameters.

The likelihood would be $p(x | \theta)$, but imagine this is very difficult to compute, (i.e., not in any exponential family).

We write the marginal likelihood as:

$$p(x | \theta) = \sum_z p(x, z | \theta)$$

In this model z is our latent variable, and discrete here.

Goal, learn θ via ML

$$\Theta_{ML} = \arg\max_{\theta} \sum_z p(x, z | \theta)$$

completely intractable since this is a summation over exponential z of terms.

Derive a bound on the likelihood

We use Jensen's inequality where $f(\cdot)$ is some convex function

$$f(E[x]) \leq E[f(x)]$$

If $f(\cdot)$ is concave, the inequality is reversed:

$$f(E[x]) \geq E[f(x)]$$

Let $f(x)$ be the $\log(x)$ where x is some probability value then:

$$\log E(x) \geq E[\log(x)]$$
Jensen's inequality continued

\[\log E[x] \geq E[\log(x)] \]

\[\Rightarrow \text{ concave function} \]

\[\log p(x|\theta) = \log \sum_z \frac{p(x, z|\theta)}{q(z)} \]

\[= \log \sum_z q(z) \frac{p(x, z|\theta)}{q(z)} \]

\[\Rightarrow q(z) \]

\[= \log E_q \left[\frac{p(x, z|\theta)}{q(z)} \right] \]

\[\text{use Jensen's inequality} \]

\[\log p(x|\theta) = \log E_q \left[\frac{p(x, z|\theta)}{q(z)} \right] \]

\[\log E_q \left[\frac{p(x, z|\theta)}{q(z)} \right] \geq E_q \left[\log \frac{p(x, z|\theta)}{q(z)} \right] \]

\[= E_q \left[\log p(x, z|\theta) - \log q(z) \right] \]

\[= E_q \left[\log p(x, z|\theta) \right] - E \left[\log q(z) \right] \]

\[= E_q \left[\log p(x, z|\theta) \right] + H(q) \]

\text{Key idea: we can improve these terms via EM!}

\text{E-step}

\text{D) Choose} \quad q(z^{(i+1)}) = p(z|x, \theta^i)
We can show that: \[\ln p(x \mid \theta) = \sum_z g(z) \ln \left(\frac{p(z \mid x \mid \theta)}{q(z)} \right) - \sum_z g(z) \ln \left(\frac{p(z \mid x \mid \theta)}{q(z)} \right) \]

Plugging in \(\ln p(z, x \mid \theta) = \ln p(z \mid x, \theta) + \ln p(x \mid \theta) \)

\[\ln p(x \mid \theta) = \sum_z g(z) \ln p(z \mid x \mid \theta) - \sum_z g(z) \ln q(z) - \sum_z g(z) \ln p(z \mid x, \theta) + \sum_z g(z) \ln q(z) \]

\[= \sum_z g(z) \ln p(z \mid x, \theta) + \sum_z g(z) \ln p(x \mid \theta) - \sum_z g(z) \ln p(z \mid x, \theta) \]

\[= \sum_z g(z) \ln p(x \mid \theta) = \ln p(x \mid \theta) \]

It turns out that increasing this lower bound results in minimizing the KL divergence between our true posterior \(p(z \mid x, \theta) \) and our variational distribution \(q(z) \).

When \(q(z) = p(z \mid x, \theta) \), the KL divergence vanishes and we reach the maximum of that bound.

Thus in the E-step, we specify our \(q(z) = p(z \mid x, \theta) \).

\[L(q, \theta) = \sum_z p(z \mid x, \theta^{old}) \ln p(x, z \mid \theta) - \sum_z p(z \mid x, \theta^{old}) \ln p(z \mid x, \theta^{DM}) \]

The M-step takes the variational distribution \(q(z) \) to be fixed and the lower bound is maximized w.r.t to \(\theta \).
EM Algorithm

1. Choose some parameters for θ which we will call θ_{old}

2. Evaluate $p(z|x, \theta_{old})$ (E-step)

 a) This results in removing the KL divergence term leaving you with the lower bound $L(\theta, \theta_{old})$.

3. Maximize the $E_{\theta} \left[\log p(x, z | \theta) \right]$ (M-step)

 expectation of the complete data log likelihood

4. Since the expectation is maximized w.r.t to θ_{old}, the new θ will increase the original log-likelihood of $\ln p(x | \theta_{old})$

GMM - Gaussian Mixture Model

Complete Data Likelihood

$$p(x_i, z_i | \mu, \Sigma) = \sum_{k} \Pi(z_i = k) \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)$$

Likelihood Function

$$p(x | \mu, \Sigma) = \prod_{L=1}^{N} \sum_{K} \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)$$

\(\leftarrow \text{has } K^N \text{ terms} \)
Step 1 for GMM - E-step

Set \(q(z_i) = \frac{p(z_i = k | x_i, \mu, \Sigma)}{p(x_i | \mu, \Sigma)} = \frac{\tau_i N(x_i | \mu_k, \Sigma_k)}{\sum_k \tau_i N(x_i | \mu_k, \Sigma_k)} \)

Compute the new bound

\[
E_q \left[\log p(x, z | \theta) \right] = \sum_{i=1}^{N} \sum_{k=1}^{K} p(z_i = k | x_i, \mu, \Sigma) \left[\log \tau_k + \log N(x_i | \mu_k, \Sigma_k) \right]
\]

Step 2 for GMM - M-Step

Maximise w.r.t. \(\mu, \Sigma \)

\[
\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{i=1}^{N} p(z_i = k | x_i, \mu, \Sigma) x_i
\]

\[
\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{i=1}^{N} p(z_i = k | x_i, \mu, \Sigma) (x_i - \mu_k^{\text{new}})(x_i - \mu_k^{\text{new}})^T
\]

\[
\tau_k^{\text{new}} = \frac{N_k}{N} \quad \text{where} \quad N_k = \sum_{i=1}^{N} p(z_i = k | x_i, \mu, \Sigma)
\]

Step 3

Check convergence between log likelihood

\[
\ln p(x | \theta) \to \ln p(x | \theta^{(t+1)})
\]