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Many figures courtesy Kevin Murphy’s textbook, 
Machine Learning: A Probabilistic Perspective 



Markov Chains 

Markov Property 
Conditioned on the present, the past and future are independent 

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · ·



Graphical Models vs. State Diagrams 

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · ·

Graphical Model:  One node per time point 

xt ∈ {1, 2, . . . ,K}

State Transition Matrix: A ∈ RK×K , Aij = p(xt = j | xt−1 = i)

State Transition Diagram:  One node per discrete state 

Not a graphical model!  Interesting when state transition matrix is sparse. 

Interesting when Markov chain is part of a more complex model. 



Trellis Diagrams 

•! Row for each possible state, column for each time point 
•! A realized state sequence is a path through the trellis 
•! State transition diagram determines allowable paths 



Hidden Markov Models (HMMs) 

zt → Hidden states taking one of K discrete values 

xt → Observations taking values in any space 

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Discrete: 
 
Continuous Gaussian: 
 
Or any convenient family, e.g. an exponential family! 

p(xt = � | zt = k) = Bk�

M observation symbols → B ∈ RK×M

p(xt | zt = k) = N (xt | µk,Σk)



Examples:  Sequence Labeling in NLP 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

M. Johnson, 2009 



Example:  Discrete Language HMM 

M. Johnson, 2009 

start 
state 

terminal 
state 

buy a pan 
eat the flour 
buy flour eat the flour buy pan eat a pan 



Example:  3-State Gaussian HMM 

xt
zt

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

State 1 State 2 

State 3 



Gaussian Mixture Models 
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Mixture models are a special case of HMMs, in which the 
state transition distribution happens to not depend on the 
previous state, and becomes the mixture prior probability. 



Gaussian Mixture Models vs. HMMs 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Mixture 
Model 

p(xi | zi, π, µ,Σ) = Norm(xi | µzi ,Σzi)

p(zi | π, µ,Σ) = Cat(zi | π)

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

p(zt | π, µ,Σ, zt−1, zt−2, . . .) = Cat(zt | πzt−1
)

p(xt | zt, π, µ,Σ) = Norm(xt | µzt ,Σzt)
Recover mixture model when all rows of state transition matrix are equal. 

zi ∈ {1, . . . ,K}



EM for Mixture Models 

N 

yi

xi

π

θ

π

θ

Supervised 
Training 

Supervised 
Testing 

xt

yt

N 
xi

π

θ

zi

Unsupervised 
Learning 

•! Initialization: Randomly select starting parameters 
•! E-Step: Given parameters, find posterior of hidden data 

•! Equivalent to test inference of full posterior distribution 
•! M-Step: Given posterior distributions, find likely parameters 

•! Distinct from supervised ML/MAP, but often still tractable 
•! Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
π, θ parameters (define cluster location and shape) 

hidden data (group observations into clusters) 



EM for Hidden Markov Models 
π

θ

•! Initialization: Randomly select starting parameters 
•! E-Step: Given parameters, find posterior of hidden states 

•! Dynamic programming to efficiently infer state marginals 
•! M-Step: Given posterior distributions, find likely parameters 

•! Like training of mixture models and Markov chains 
•! Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
π, θ parameters (state transition & emission dist.) 

hidden discrete state sequence 

  
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5



E-Step: Mixture Models 
ln p(x | θ) ≥

∑

z

q(z) ln p(x, z | θ)−
∑

z

q(z) ln q(z) � L(q, θ)

q(t) = argmax
q

L(q, θ(t−1))

•! General solution, for any probabilistic model: 

q(t)(z) = p(z | x, θ(t−1))
posterior distribution 
given current parameters 

N 
xi

π

θ

zi

•! Applying to probabilistic mixture models: 

p(zi | π) = Cat(zi | π)

rik = p(zi = k | xi, π, θ) =
πkp(xi | θk)∑K
�=1 π�p(xi | θ�)

p(xi | zi, θ) = p(xi | θzi)



E-Step: HMMs 
q(t)(z) = p(z | x, π(t−1), θ(t−1)) ∝ p(z | π(t−1))p(x | z, θ(t−1))

Mixture Models 

q(t)(z) ∝
N∏

i=1

p(zi | π(t−1))p(xi | zi, θ(t−1))

•! Hidden states are conditionally independent given parameters 
•! Naïve representation of full posterior has size O(KN)

HMMs 

O(KN )

q(t)(z) ∝
N∏

i=1

p(zi | π(t−1)
zi−1

)p(xi | zi, θ(t−1))

•! Hidden states have Markov dependence given parameters 
•! Naïve representation of full posterior has size 
•! Must use dynamic programming to compute summaries 

of posterior required by the M-step 



M-Step: Mixture Models 
ln p(x | θ) ≥

∑

z

q(z) ln p(x, z | θ)−
∑

z

q(z) ln q(z) � L(q, θ)

θ(t) = argmax
θ

L(q(t), θ) = argmax
θ

∑

z

q(z) ln p(x, z | θ)

N 
xi

π

θ

zi

•! Unlike E-step, no simplified general solution 
•! Applying to mixtures of exponential families: 

p(zi | π) = Cat(zi | π)
p(xi | zi, θ) = exp(θTziφ(xi)−A(θzi))

Nk =

N∑

i=1

rik

π̂k =
Nk

N

Eθ̂k
[φ(x)] =

1

Nk

N∑

i=1

rikφ(xi)

weighted 
moment 
matching 



M-Step: HMMs 
θ(t) = argmax

θ
L(q(t), θ) = argmax

θ

∑

z

q(z) ln p(x, z | θ)

Initial state dist. State transition dist. 

State emission dist. (observation likelihoods) 

Need posterior marginal 
distributions of single 
states, and pairs of 
sequential states 

p(zt | x)
p(zt, zt+1 | x)

emissions via 
weighted  

moment matching 



Inference in HMMs 

p(zt | x1, . . . , xt)

p(zt | x1, . . . , xT )

p(zt+h | x1, . . . , xt)

p(zt−� | x1, . . . , xt)

Filtering: Prediction: 

Fixed lag smoothing: Fixed interval (batch) smoothing: 

•! E-step of HMM training requires fixed interval smoothing 
•! Financial or weather forecasting requires prediction 
•! Automatic speech recognition: batch smoothing for training, 

filtering or fixed lag smoothing for test deployment 
•! Computed by variants of the forward-backward algorithm, 

also known as belief propagation or sum-product algorithm 



The Occasionally Dishonest Casino 

Fair Die Loaded Die 

p(zt | x1, . . . , xt) p(zt | x1, . . . , xT ) MAP Estimate 


