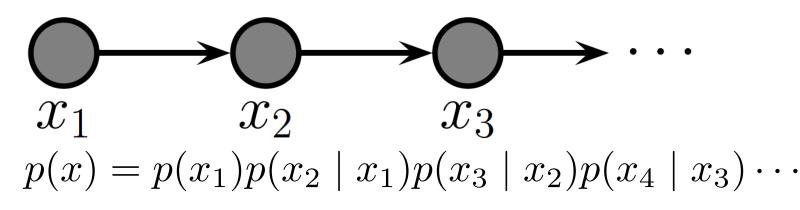
Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth

> Lecture 23: Hidden Markov Models

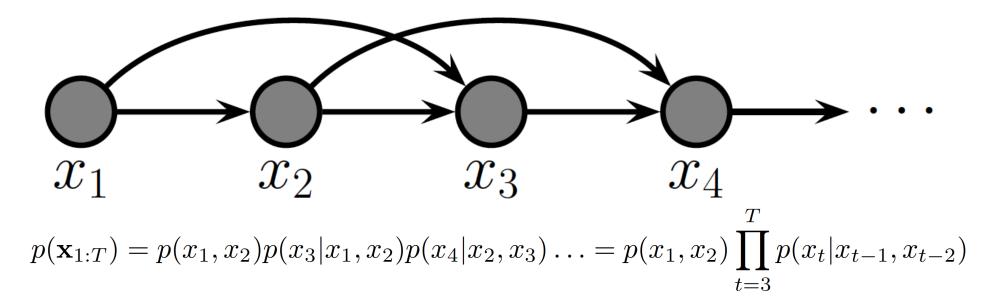
> > Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

Markov Chains



Markov Property

Conditioned on the present, the past and future are independent



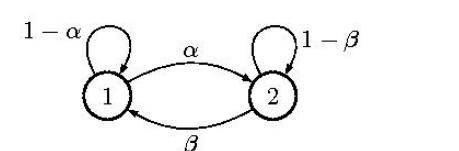
Graphical Models vs. State Diagrams

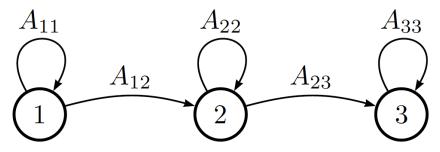
Graphical Model: One node per time point

Interesting when Markov chain is part of a more complex model.

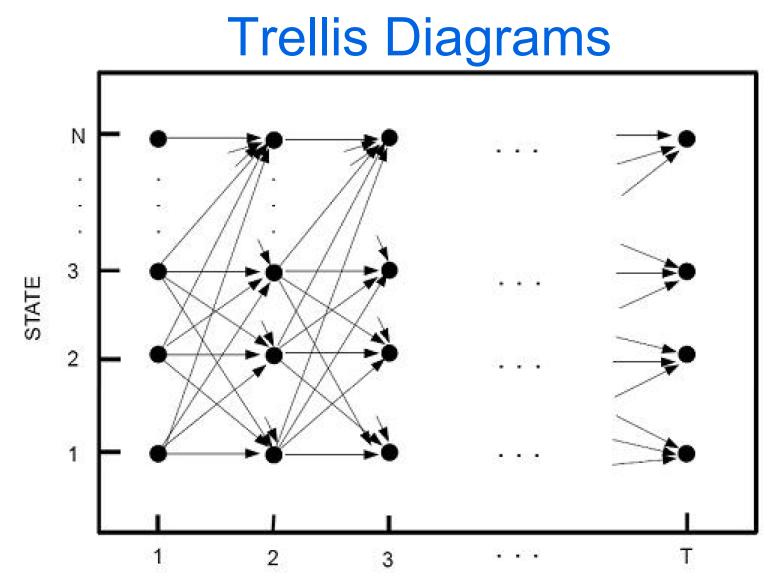
State Transition Matrix: $A \in \mathbb{R}^{K \times K}, A_{ij} = p(x_t = j \mid x_{t-1} = i)$

State Transition Diagram: One node per discrete state



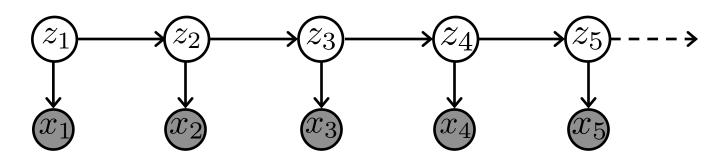


Not a graphical model! Interesting when state transition matrix is sparse.



- Row for each possible state, column for each time point
- A realized state sequence is a path through the trellis
- State transition diagram determines allowable paths

Hidden Markov Models (HMMs)



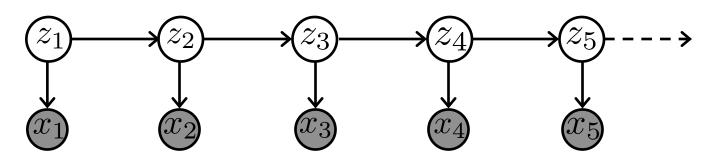
$$p(\mathbf{z}_{1:T}, \mathbf{x}_{1:T}) = p(\mathbf{z}_{1:T})p(\mathbf{x}_{1:T} | \mathbf{z}_{1:T}) = \left[p(z_1) \prod_{t=2}^T p(z_t | z_{t-1}) \right] \left[\prod_{t=1}^T p(\mathbf{x}_t | z_t) \right]$$

 $z_t \rightarrow$ Hidden states taking one of K discrete values

 $\begin{array}{ll} x_t \rightarrow & \text{Observations taking values in any space} \\ & \text{Discrete:} & M \text{ observation symbols } \rightarrow B \in \mathbb{R}^{K \times M} \\ & p(x_t = \ell \mid z_t = k) = B_{k\ell} \\ & \text{Continuous Gaussian:} \\ & p(x_t \mid z_t = k) = \mathcal{N}(x_t \mid \mu_k, \Sigma_k) \end{array}$

Or any convenient family, e.g. an exponential family...

Examples: Sequence Labeling in NLP



Part of speech (POS) tagging:

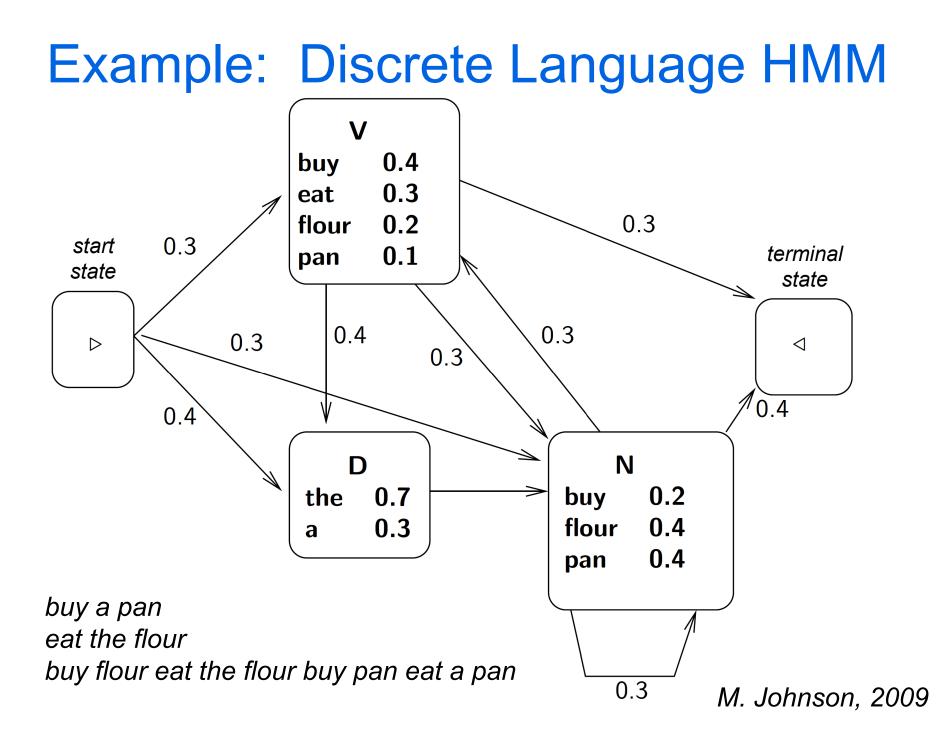
- \mathbf{Z} : DT JJ NN VBD NNP.
- \boldsymbol{x} : the big cat bit Sam .

Named entity detection:

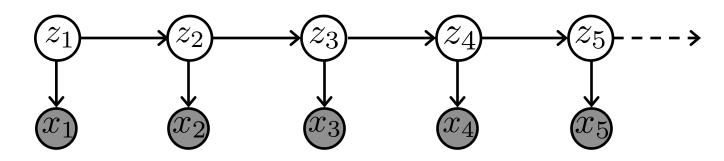
 \mathbf{z} : $[CO \quad CO]$ _[LOC]_[PER]_ \boldsymbol{x} :XYZCorp.ofBostonannouncedSpade'sresignation

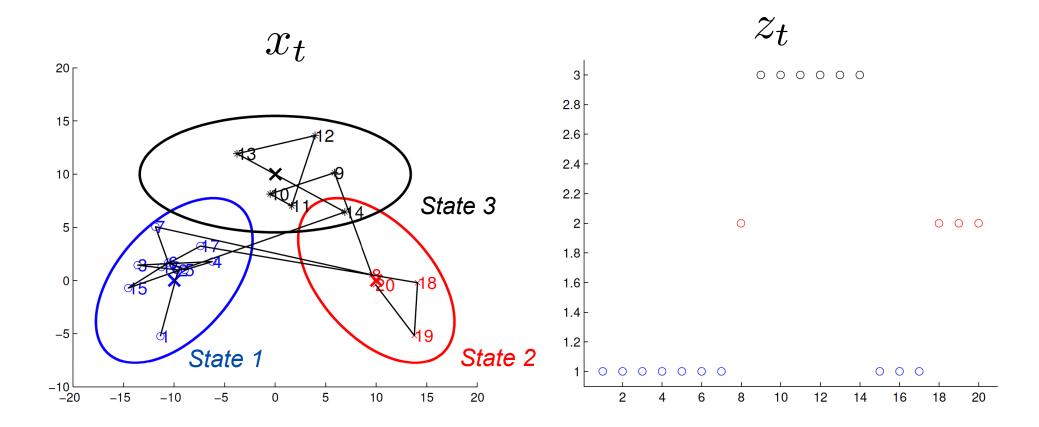
Speech recognition: The x are 100 msec. time slices of acoustic input, and the z are the corresponding phonemes (i.e., z_i is the phoneme being uttered in time slice x_i)

M. Johnson, 2009

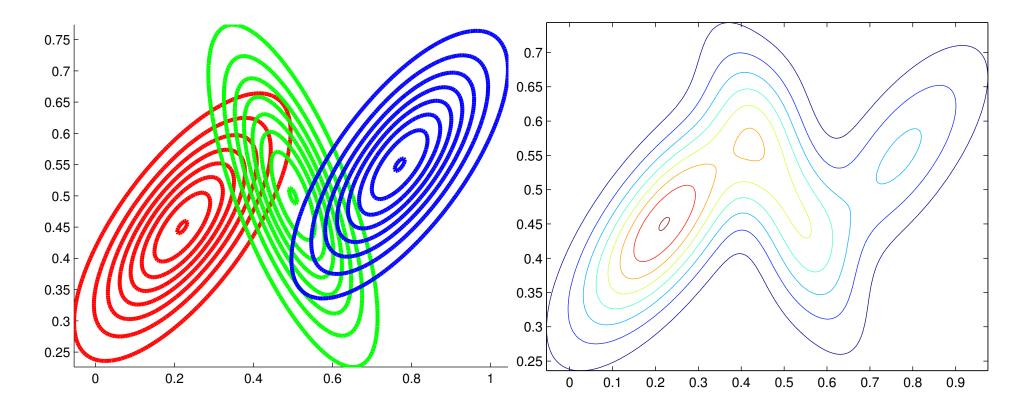


Example: 3-State Gaussian HMM





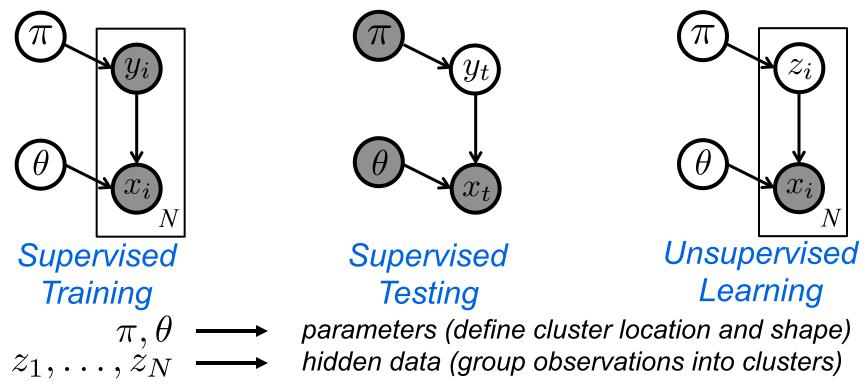
Gaussian Mixture Models



Mixture models are a special case of HMMs, in which the state transition distribution happens to not depend on the previous state, and becomes the mixture prior probability.

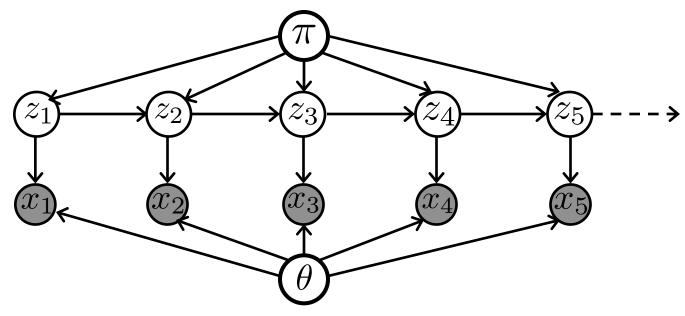
Recover mixture model when all rows of state transition matrix are equal.

EM for Mixture Models



- Initialization: Randomly select starting parameters
- E-Step: Given parameters, find posterior of hidden data
 - Equivalent to test inference of full posterior distribution
- M-Step: Given posterior distributions, find likely parameters
 - Distinct from supervised ML/MAP, but often still tractable
- Iteration: Alternate E-step & M-step until convergence

EM for Hidden Markov Models



 $\pi, \theta \longrightarrow$ parameters (state transition & emission dist.) $z_1, \ldots, z_N \longrightarrow$ hidden discrete state sequence

- Initialization: Randomly select starting parameters
- E-Step: Given parameters, find posterior of hidden states
 - Dynamic programming to efficiently infer state marginals
- M-Step: Given posterior distributions, find likely parameters
 - Like training of mixture models and Markov chains
- Iteration: Alternate E-step & M-step until convergence

E-Step: Mixture Models

$$\ln p(x \mid \theta) \ge \sum_{z} q(z) \ln p(x, z \mid \theta) - \sum_{z} q(z) \ln q(z) \triangleq \mathcal{L}(q, \theta)$$

$$q^{(t)} = \arg \max_{q} \mathcal{L}(q, \theta^{(t-1)})$$

• General solution, for any probabilistic model:

$$q^{(t)}(z) = p(z \mid x, \theta^{(t-1)})$$

posterior distribution given current parameters

• Applying to probabilistic mixture models:

$$p(z_i \mid \pi) = \operatorname{Cat}(z_i \mid \pi)$$

$$p(x_i \mid z_i, \theta) = p(x_i \mid \theta_{z_i})$$

$$r_{ik} = p(z_i = k \mid x_i, \pi, \theta) = \frac{\pi_k p(x_i \mid \theta_k)}{\sum_{\ell=1}^K \pi_\ell p(x_i \mid \theta_\ell)}$$

E-Step: HMMs

 $q^{(t)}(z) = p(z \mid x, \pi^{(t-1)}, \theta^{(t-1)}) \propto p(z \mid \pi^{(t-1)}) p(x \mid z, \theta^{(t-1)})$

Mixture Models $q^{(t)}(z) \propto \prod_{i=1}^{N} p(z_i \mid \pi^{(t-1)}) p(x_i \mid z_i, \theta^{(t-1)})$

A T

- Hidden states are *conditionally independent* given parameters
- Naïve representation of full posterior has size O(KN)

HMMs

$$q^{(t)}(z) \propto \prod_{i=1}^{N} p(z_i \mid \pi_{z_{i-1}}^{(t-1)}) p(x_i \mid z_i, \theta^{(t-1)})$$

- Hidden states have *Markov dependence* given parameters
- Naïve representation of full posterior has size $\mathcal{O}(K^N)$
- Must use *dynamic programming* to compute summaries of posterior required by the M-step

M-Step: Mixture Models

$$\ln p(x \mid \theta) \ge \sum_{z} q(z) \ln p(x, z \mid \theta) - \sum_{z} q(z) \ln q(z) \triangleq \mathcal{L}(q, \theta)$$
$$\theta^{(t)} = \arg \max_{\theta} \mathcal{L}(q^{(t)}, \theta) = \arg \max_{\theta} \sum_{z} q(z) \ln p(x, z \mid \theta)$$

- Unlike E-step, no simplified general solution
- Applying to mixtures of *exponential families*:

$$p(z_i \mid \pi) = \operatorname{Cat}(z_i \mid \pi)$$

$$p(x_i \mid z_i, \theta) = \exp(\theta_{z_i}^T \phi(x_i) - A(\theta_{z_i}))$$

$$\hat{\pi}_k = \frac{N_k}{N}$$

$$\mathbb{E}_{\hat{\theta}_k}[\phi(x)] = \frac{1}{N_k} \sum_{i=1}^N r_{ik} \phi(x_i)$$
weighted
moment
matching

$$N_k = \sum_{i=1}^N r_{ik}$$

M-Step: HMMs

$$\theta^{(t)} = \arg\max_{\theta} \mathcal{L}(q^{(t)}, \theta) = \arg\max_{\theta} \sum_{z} q(z) \ln p(x, z \mid \theta)$$

$$\sum_{k=1}^{K} \mathbb{E}\left[N_{k}^{1}\right] \log \pi_{k} + \sum_{j=1}^{K} \sum_{k=1}^{K} \mathbb{E}\left[N_{jk}\right] \log A_{jk}$$

$$\hat{\pi}_{k} = \frac{\mathbb{E}\left[N_{k}^{1}\right]}{N}$$
$$\hat{A}_{jk} = \frac{\mathbb{E}\left[N_{jk}\right]}{\sum_{k'} \mathbb{E}\left[N_{jk'}\right]}$$

 $+\sum_{i=1}^{N}\sum_{t=1}^{T_{i}}\sum_{k=1}^{K}\sum_{k=1}^{\text{State emission dist. (observation likelihoods)}} \log p(\mathbf{x}_{i,t}|\boldsymbol{\phi}_{k})$

weighted moment matching

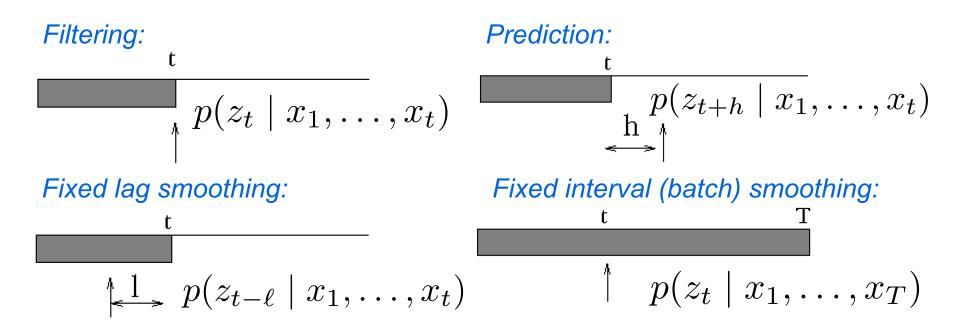
emissions via

$$\mathbb{E}\left[N_{k}^{1}\right] = \sum_{i=1}^{N} p(z_{i1} = k | \mathbf{x}_{i}, \boldsymbol{\theta}^{old})$$
$$\mathbb{E}\left[N_{jk}\right] = \sum_{i=1}^{N} \sum_{t=2}^{T_{i}} p(z_{i,t-1} = j, z_{i,t} = k | \mathbf{x}_{i}, \boldsymbol{\theta}^{old})$$
$$\mathbb{E}\left[N_{j}\right] = \sum_{i=1}^{N} \sum_{t=1}^{T_{i}} p(z_{i,t} = j | \mathbf{x}_{i}, \boldsymbol{\theta}^{old})$$

Need posterior marginal distributions of single states, and pairs of sequential states

$$p(z_t \mid x)$$
$$p(z_t, z_{t+1} \mid x)$$

Inference in HMMs



- E-step of HMM training requires *fixed interval smoothing*
- Financial or weather forecasting requires prediction
- Automatic speech recognition: *batch smoothing* for training, *filtering or fixed lag smoothing* for test deployment
- Computed by variants of the *forward-backward* algorithm, also known as *belief propagation* or *sum-product* algorithm

The Occasionally Dishonest Casino

