Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth

Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics

> Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

$$\mathbb{E}[f] = \int f(z)p(z) \, dz \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) \qquad z^{(\ell)} \sim p(z)$$

Estimation of expected model properties via simulation

Provably good if *L* **sufficiently large:**

- Unbiased for any sample size
- Variance inversely proportional to sample size (and independent of dimension of space)
- Weak law of large numbers
- Strong law of large numbers
- **Problem:** Drawing samples from complex distributions...

Alternatives for hard problems:

- Importance sampling
- Markov chain Monte Carlo (MCMC)

- At each time point, state $z^{(t)}$ is a configuration of *all the variables in the model:* parameters, hidden variables, etc.
- We design the transition distribution $q(z \mid z^{(t)})$ so that the chain is *irreducible* and *ergodic*, with a unique stationary distribution $p^*(z)$

$$p^*(z) = \int_{\mathcal{Z}} q(z \mid z') p^*(z') \, dz'$$

- For learning, the target equilibrium distribution is usually the posterior distribution given data *x*: $p^*(z) = p(z \mid x)$
- Popular recipes: *Metropolis-Hastings and Gibbs samplers*

Gibbs Sampler for a 2D Gaussian

C. Bishop, Pattern Recognition & Machine Learning

Probabilistic Mixture Models

Mixture Sampler Pseudocode

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \,\delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K) \qquad \qquad N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$\theta_k^{(t)} \sim p(\theta_k \mid \{x_i \mid z_i^{(t)} = k\}, \lambda)$$

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Snapshots of Mixture Gibbs Sampler

Collapsed Sampling Algorithms

Conjugate priors allow exact marginalization of parameters, to make an equivalent model with fewer variables

Gibbs: Representation and Mixing

Standard Gibbs: Alternatively sample assignments, parameters **Collapsed Gibbs:** Marginalize parameters, sample assignments

MCMC & Computational Resources

Best practical option: A few (> 1) initializations for as many iterations as possible

(1)

End of New Material

Next Slides: Some review and some advertisement of advanced topics

The Main Learning Problems

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

- Supervised: Learn to approximate a function from examples
- Unsupervised: Learn a representation which compresses data
- Probabilistic learning: Learn by maximizing probability, or minimizing an expected loss

Supervised Learning

Generative ML or MAP Learning: Naïve Bayes

 $\max_{\pi,\theta} \log p(\pi) + \log p(\theta) + \sum_{i=1}^{N} \left[\log p(y_i \mid \pi) + \log p(x_i \mid y_i, \theta) \right]$

Discriminative ML or MAP Learning: Logistic regression

$$\max_{\theta} \log p(\theta) + \sum_{i=1}^{N} \log p(y_i \mid x_i, \theta)$$

Learning via Optimization

ML Estimate: $\hat{w} = \arg\min_{w} -\sum_{i} \log p(y_i \mid x_i, w)$ MAP Estimate: $\hat{w} = \arg\min_{w} -\log p(w) - \sum_{i} \log p(y_i \mid x_i, w)$

Gradient vectors:

$$f: \mathbb{R}^M \to \mathbb{R}$$
$$\nabla_w f(w)_k = \frac{\partial f(w)}{\partial w_k}$$

Hessian matrices:

$$\nabla_w^2 f : \mathbb{R}^M \to \mathbb{R}^{M \times M} \qquad (\nabla_w f(w))_{k,\ell} = \frac{\partial f(w)}{\partial w_k \partial w_\ell}$$

 $\partial^2 f(an)$

Optimization of Smooth Functions:

- *Closed form:* Find zero gradient points, check curvature
- *Iterative:* Initialize somewhere, use gradients to take steps towards better (by convention, smaller) values

Unsupervised Learning

Clustering:

$$\max_{\pi,\theta} \log p(\pi) + \log p(\theta) + \sum_{i=1}^{N} \log \left[\sum_{z_i} p(z_i \mid \pi) p(x_i \mid z_i, \theta) \right]$$

Dimensionality Reduction:

$$\max_{\pi,\theta} \log p(\pi) + \log p(\theta) + \sum_{i=1}^{N} \log \left[\int_{z_i} p(z_i \mid \pi) p(x_i \mid z_i, \theta) \, dz_i \right]$$

- No notion of training and test data: labels are *never* observed
- As before, *maximize* posterior probability of model parameters
- For hidden variables associated with each observation, we marginalize over possible values rather than estimating
 - Fully accounts for uncertainty in these variables
 - There is one hidden variable per observation, so cannot perfectly estimate even with infinite data
- Must use generative model (discriminative degenerates)

Expectation Maximization (EM)

Training

 z_1,\ldots,z_N

 π, θ

Supervised Testing Unsupervised Learning

- parameters (define low-dimensional manifold)
- hidden data (locate observations on manifold)
- Initialization: Randomly select starting parameters
- E-Step: Given parameters, find posterior of hidden data
 - Equivalent to test inference of full posterior distribution
- **M-Step:** Given posterior distributions, find likely parameters
 - Similar to supervised ML/MAP training
- Iteration: Alternate E-step & M-step until convergence

EM as Lower Bound Maximization
$$\ln p(x \mid \theta) = \ln \left(\int_{z} p(x, z \mid \theta) \, dz \right)$$
$$\ln p(x \mid \theta) \ge \int_{z} q(z) \ln p(x, z \mid \theta) \, dz - \int_{z} q(z) \ln q(z) \, dz \triangleq \mathcal{L}(q, \theta)$$

- Initialization: Randomly select starting parameters $\theta^{(0)}$
- E-Step: Given parameters, find posterior of hidden data

$$q^{(t)} = \arg\max_{q} \mathcal{L}(q, \theta^{(t-1)})$$

- M-Step: Given posterior distributions, find likely parameters $\theta^{(t)} = \arg\max_{\theta} \mathcal{L}(q^{(t)}, \theta)$
- Iteration: Alternate E-step & M-step until convergence

Recover mixture model when all rows of state transition matrix are equal.

Probabilistic PCA & Factor Analysis

• Both Models: Data is a linear function of low-dimensional latent coordinates, plus Gaussian noise

$$p(x_i \mid z_i, \theta) = \mathcal{N}(x_i \mid Wz_i + \mu, \Psi) \qquad p(z_i \mid \theta) = \mathcal{N}(z_i \mid 0, I)$$

$$p(x_i \mid \theta) = \mathcal{N}(x_i \mid \mu, WW^T + \Psi) \qquad \frac{\log 1}{\log 1}$$

low rank covariance parameterization

- Factor analysis: Ψ is a general diagonal matrix
- **Probabilistic PCA:** $\Psi = \sigma^2 I$ is a multiple of identity matrix

- States & observations jointly Gaussian:
 - All marginals & conditionals Gaussian
 - Linear transformations remain Gaussian

Simple Linear Dynamics

Kalman Filter

- $\begin{aligned} x_{t+1} &= Ax_t + w_t & w_t \sim \mathcal{N}(0, Q) \\ y_t &= Cx_t + v_t & v_t \sim \mathcal{N}(0, R) \end{aligned}$
- Represent Gaussians by mean & covariance: $p(x_t \mid y_1, \dots, y_{t-1}) = \mathcal{N}(x; \tilde{\mu}_t, \tilde{\Lambda}_t)$

$$p(x_t \mid y_1, \ldots, y_t) = \mathcal{N}(x; \mu_t, \Lambda_t)$$

Prediction:

$$\tilde{\mu}_t = A\mu_{t-1}$$

$$\tilde{\Lambda}_t = A\Lambda_{t-1}A^T + Q$$

$$K_t = \tilde{\Lambda}_t C^T (C\tilde{\Lambda}_t C^T + R)^{-1}$$

Kalman Gain:

Update:

$$\mu_t = \tilde{\mu}_t + K_t(y_t - C\tilde{\mu}_t)$$
$$\Lambda_t = \tilde{\Lambda}_t - K_t C\tilde{\Lambda}_t$$

Constant Velocity Tracking

Kalman Filter

Kalman Smoother

Nonlinear State Space Models $x_t \in \mathbb{R}^d$ *x*3 x_4 x_2 x_1 x_{C} $y_t \in \mathbb{R}^k$ y_2 y_3 y_1 $x_{t+1} = f(x_t, w_t)$ $w_t \sim \mathcal{F}$ $v_t \sim \mathcal{G}$ $y_t = q(x_t, v_t)$

- State dynamics and measurements given by potentially complex nonlinear functions
- Noise sampled from non-Gaussian distributions

Examples of Nonlinear Models

Dynamics implicitly determined by geophysical simulations

Observed image is a complex function of the 3D pose, other nearby objects & clutter, lighting conditions, camera calibration, etc.

Prediction:

$$\tilde{q}_{t}(x_{t}) = \int p(x_{t} \mid x_{t-1}) q_{t-1}(x_{t-1}) \, dx_{t-1}$$
Jpdate:

$$q_{t}(x_{t}) = \frac{1}{-} \tilde{q}_{t}(x_{t}) p(y_{t} \mid x_{t})$$

 Z_t

Approximate Nonlinear Filters $q_t(x_t) \propto p(y_t \mid x_t) \cdot \int p(x_t \mid x_{t-1}) q_{t-1}(x_{t-1}) dx_{t-1}$

- No direct represention of continuous functions, or closed form for the prediction integral
- Big literature on approximate filtering:
 - Histogram filters
 - Extended & unscented Kalman filters
 - Particle filters
 - ▶ ...

Nonlinear Filtering Taxonomy

Histogram Filter:

- Evaluate on fixed discretization grid
- Only feasible in low dimensions
- Expensive or inaccurate

Extended/Unscented Kalman Filter:

- Approximate posterior as Gaussian via linearization, quadrature, ...
- Inaccurate for multimodal posterior distributions

Particle Filter:

- Dynamically evaluate states with highest probability
- ➢Monte Carlo approximation

Particle Filters

Condensation, Sequential Monte Carlo, Survival of the Fittest,...

- Represent state estimates using a set of samples
- Propagate over time using importance sampling

Sample-based density estimate

Weight by observation likelihood

 $\tilde{q}_{t+1}(x_{t+1})$

Particle Filtering Movie

(M. Isard, 1996)

Dynamic Bayesian Networks

Specify and exploit internal structure in the hidden states underlying a time series

DBN Hand Tracking Video

Isard et. al., 1998

Particle Filtering Caveats

- Particle filters are easy to implement, and effective in many applications, BUT
 - It can be difficult to know how many samples to use, or to tell when the approximation is poor
 - Sometimes suffer catastrophic failures, where NO particles have significant posterior probability
 - This is particularly true with "peaky" observations in high-dimensional spaces:

dynamics

The Big Picture

Ghahramani & Roweis