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Monte Carlo Methods 

•! Unbiased for any sample size 
•! Variance inversely proportional to sample size 

(and independent of dimension of space) 
•! Weak law of large numbers 
•! Strong law of large numbers 
•! Problem:  Drawing samples from complex distributions! 

Provably good if L sufficiently large: 

Alternatives for hard problems: 
•! Importance sampling 
•! Markov chain Monte Carlo (MCMC) 

z(�) ∼ p(z)E[f ] =
∫

f(z)p(z) dz ≈ 1

L

L∑

�=1

f(z(�))

Estimation of expected model properties via simulation 



Markov Chain Monte Carlo 

•! At each time point, state          is a configuration of all the 
variables in the model: parameters, hidden variables, etc. 

•! We design the transition distribution                       so that 
the chain is irreducible and ergodic, with a unique 
stationary distribution 

z(0) z(1) z(2) z(t+1) ∼ q(z | z(t))

z(t)

q(z | z(t))

p∗(z)

p∗(z) =

∫

Z
q(z | z′)p∗(z′) dz′

•! For learning, the target equilibrium distribution is usually the 
posterior distribution given data x:   

•! Popular recipes:  Metropolis-Hastings and Gibbs samplers 
p∗(z) = p(z | x)



Gibbs Sampler for a 2D Gaussian 
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Under mild conditions, 
converges assuming all 
variables are resampled 

infinitely often (order can be 
fixed or random) 

General Gibbs Sampler 



Probabilistic Mixture Models 
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p(xi | zi, µ,Σ) = N (xi | µzi ,Σzi)

p(zi | π) = Cat(zi | π)
θk = {µk,Σk}



Mixture Sampler Pseudocode 



Snapshots of Mixture Gibbs Sampler 
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Collapsed Sampling Algorithms 

zi ∼ Cat(π)

π ∼ Dir(α)

xi ∼ F (θzi)

θk ∼ G(β)
Conjugate priors allow 

exact marginalization of 
parameters, to make an 
equivalent model with 

fewer variables 



Gibbs: Representation and Mixing 

Quantiles of 100 Chains Multiple Initializations 

Standard Gibbs:  Alternatively sample assignments, parameters 
Collapsed Gibbs:  Marginalize parameters, sample assignments 



MCMC & Computational Resources   p   

Best practical option: 
A few (> 1) initializations 
for as many iterations as possible 



End of New Material 

Next Slides:  Some review  
and some advertisement  

of advanced topics 



The Main Learning Problems 
Supervised Learning Unsupervised Learning 
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classification or 
categorization 

regression 

clustering 

dimensionality 
reduction 

•!Supervised:  Learn to approximate a function from examples 
•!Unsupervised:  Learn a representation which compresses data 
•!Probabilistic learning:  Learn by maximizing probability, 
or minimizing an expected loss 



Supervised Learning 
Generative ML or MAP Learning:  Naïve Bayes 

N 

yi

xi

π

θ

π

θ

Train Test 

xt

yt

max
π,θ

log p(π) + log p(θ) +

N∑

i=1

[log p(yi | π) + log p(xi | yi, θ)]

Discriminative ML or MAP Learning:  Logistic regression 

N 

yi

xi
θ θ

Train Test 

xt

yt

max
θ

log p(θ) +

N∑

i=1

log p(yi | xi, θ)



Learning via Optimization 

f : RM → R
Gradient vectors: 

(∇wf(w))k =
∂f(w)

∂wk∇wf : RM → RM

ŵ = argmin
w

− log p(w)−
∑

i

log p(yi | xi, w)

ŵ = argmin
w

−
∑

i

log p(yi | xi, w)ML Estimate: 

MAP Estimate: 

Hessian matrices: 

∇2
wf : RM → RM×M (∇wf(w))k,� =

∂2f(w)

∂wk∂w�

Optimization of Smooth Functions: 
•! Closed form:  Find zero gradient points, check curvature 
•! Iterative:  Initialize somewhere, use gradients to take steps 

towards better (by convention, smaller) values 



Unsupervised Learning 

N 
xi

π

θ

max
π,θ

log p(π) + log p(θ) +

N∑

i=1

log

[
∑

zi

p(zi | π)p(xi | zi, θ)
]

max
π,θ

log p(π) + log p(θ) +

N∑

i=1

log

[∫

zi

p(zi | π)p(xi | zi, θ) dzi
]

Clustering: 

Dimensionality Reduction: 

zi

•! No notion of training and test data: labels are never observed 
•! As before, maximize posterior probability of model parameters 
•! For hidden variables associated with each observation, we 

marginalize over possible values rather than estimating 
•! Fully accounts for uncertainty in these variables 
•! There is one hidden variable per observation, so cannot 

perfectly estimate even with infinite data 
•! Must use generative model (discriminative degenerates) 



Expectation Maximization (EM) 

N 

yi

xi

π

θ

π

θ

Supervised 
Training 

Supervised 
Testing 

xt

yt

N 
xi

π

θ

zi

Unsupervised 
Learning 

•! Initialization: Randomly select starting parameters 
•! E-Step: Given parameters, find posterior of hidden data 

•! Equivalent to test inference of full posterior distribution 
•! M-Step: Given posterior distributions, find likely parameters 

•! Similar to supervised ML/MAP training 
•! Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
π, θ parameters (define low-dimensional manifold) 

hidden data (locate observations on manifold) 



EM as Lower Bound Maximization 

•! Initialization: Randomly select starting parameters 
•! E-Step: Given parameters, find posterior of hidden data 

 
 

•! M-Step: Given posterior distributions, find likely parameters 
 
 

•! Iteration: Alternate E-step & M-step until convergence 

θ(0)

q(t) = argmax
q

L(q, θ(t−1))

θ(t) = argmax
θ

L(q(t), θ)

ln p(x | θ) = ln

(∫

z

p(x, z | θ) dz
)

ln p(x | θ) ≥
∫

z

q(z) ln p(x, z | θ) dz −
∫

z

q(z) ln q(z) dz � L(q, θ)



Gaussian Mixture Models vs. HMMs 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Mixture 
Model 

p(xi | zi,π, µ,Σ) = Norm(xi | µzi ,Σzi)

p(zi | π, µ,Σ) = Cat(zi | π)

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

p(zt | π, µ,Σ, zt−1, zt−2, . . .) = Cat(zt | πzt−1
)

p(xt | zt,π, µ,Σ) = Norm(xt | µzt ,Σzt)
Recover mixture model when all rows of state transition matrix are equal. 

zi ∈ {1, . . . ,K}



Probabilistic PCA & Factor Analysis 

C. Bishop, Pattern Recognition & Machine Learning 
z
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•! Both Models:   Data is a linear function of low-dimensional 
latent coordinates, plus Gaussian noise 

•! Factor analysis:       is a general diagonal matrix 
•! Probabilistic PCA:                    is a multiple of identity matrix 

p(zi | θ) = N (zi | 0, I)p(xi | zi, θ) = N (xi | Wzi + µ,Ψ)

p(xi | θ) = N (xi | µ,WWT +Ψ)

Ψ
Ψ = σ2I

low rank covariance 
parameterization 



Linear State Space Models 

•! States & observations jointly Gaussian: 
!! All marginals & conditionals Gaussian 
!! Linear transformations remain Gaussian 



Simple Linear Dynamics 

Time Time Time 

Brownian Motion Constant Velocity 



Kalman Filter 

Prediction: 

Update: 

•! Represent Gaussians by mean & covariance: 

Kalman Gain: 



Constant Velocity Tracking 
Kalman Filter Kalman Smoother 

(K. Murphy, 1998) 



Nonlinear State Space Models 

•! State dynamics and measurements given by 
potentially complex nonlinear functions 

•! Noise sampled from non-Gaussian distributions 



Examples of Nonlinear Models 

Dynamics implicitly determined 
by geophysical simulations 

Observed image is a complex 
function of the 3D pose, other 

nearby objects & clutter, lighting 
conditions, camera calibration, etc. 



Nonlinear Filtering 

Prediction: 

Update:  



Approximate Nonlinear Filters 

•! No direct represention of continuous functions, 
or closed form for the prediction integral 

•! Big literature on approximate filtering: 
!! Histogram filters 
!! Extended & unscented Kalman filters 
!! Particle filters 
!! ! 



Nonlinear Filtering Taxonomy 
Histogram Filter: 
!!Evaluate on fixed discretization grid 
!!Only feasible in low dimensions 
!!Expensive or inaccurate 

Extended/Unscented Kalman Filter: 
!!Approximate posterior as Gaussian 

via linearization, quadrature, ! 
!!Inaccurate for multimodal  

posterior distributions 

Particle Filter: 
!!Dynamically evaluate states 

with highest probability 
!!Monte Carlo approximation 



Particle Filters 
Condensation, Sequential Monte Carlo, Survival of the Fittest,! 

Sample-based density estimate 

Weight by observation likelihood 

Resample & propagate by dynamics 

•! Represent state estimates 
using a set of samples 

•! Propagate over time using 
importance sampling 



Particle Filtering Movie 

(M. Isard, 1996) 



Dynamic Bayesian Networks 
Specify and exploit internal structure in the 

hidden states underlying a time series  

Maneuver 
Mode 

Spatial  
Position 

Noisy 
Observations 



DBN Hand Tracking Video 

Isard et. al., 1998 



Particle Filtering Caveats 
•! Particle filters are easy to implement, and 

effective in many applications, BUT 
!! It can be difficult to know how many samples to 

use, or to tell when the approximation is poor 
!! Sometimes suffer catastrophic failures, where NO 

particles have significant posterior probability 
!! This is particularly true with peaky  observations 

in high-dimensional spaces: 
ky  obs  

dynamics 

likelihood 



The Big Picture 

Ghahramani & Roweis 


