Midterm Review (PART 2)

Topics Covered
1) K-NN (K Nearest Neighbor)
2) Linear Regression
3) Discriminant Analysis
4) Logistic Regression
5) Optimization / Convexity




K-Nearest Neighbor

What does it do?
Classifies objects based on the closest training example in feature space.

Example

If K=3, green circle will be assigned to the
triangle class.

If K=5, green circle will be assigned to the
square class.

Naive Metric utilizes Euclidean Distance
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K-Nearest Neighbor

An example of a nonparametric model (parameters grow with the # of data points)

o1
ply =c|x,D,K) = [7a Z I(y; = ¢)
1ENk(x,D)

Curse of Dimensionality
Figure from Murphy (2012)
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Question: What happens to our K-NN classifier
as the number of dimensions increases?



Linear Regression

We consider the problem of predicting real-valued outputs

Our prediction y is some linearly weighted
combination of x plus some noise.
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Figure from Murphy (2012)

Parametric or Nonparametric?

What kind of a model (Generative or Discriminative?)



Linear Regression

Regularized Linear Regression (Ridge Regression)
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Linear Regression

Can also be written in this form, explicitly showing it as a conditional model
p(y | z,0) = N(y | w' ¢(z),0?)

Basis Functions Figure from Bishop (2006)
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The MLE (Maximum Likelihood Estimate) has a unique solution
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Gaussian Discriminant Analysis

Our features are continuous and we wish to use a generative model for classification

Prior Term

ply =c|m)=Cat(y =c|mn)

Likelihood Term Question: What is
the MLE for these

p(a: ‘ Yy = C, 9) — N(CC ’ e, EC) parameters?
Gaussian assumption on the class conditional densities

Deriving the posterior using Bayes Rule
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Quadratic Discriminant Analysis

The term quadratic discriminant analysis refers to the optimal decision boundaries
for the posterior over our classes assuming a Gaussian conditional density for x.
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Some Linear, Some Quadratic

Figure from Murphy (2012)



Linear Discriminant Analysis

When our class conditional covariance parameters are all equal so that: ZC =

The boundaries all become linear functions, thus the term Linear Discriminant Analysis
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Figure from Murphy (2012)



Logistic Regression

Recall the Logistic Function

Binary Logistic Regression
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Question: Discriminative or Generative?
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Returns a value between 0 and 1 Question: Does this have a closed form solution?



Basis Functions in Linear Classification

Non-linear and Linear Boundaries from a Logistic Regression Model
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Figure from Bishop (2006)

Input space mapped via
Gaussian basis functions



Convexity / Optimization

For Logistic Regression, we have no closed form solution for the optimal weights.

One Solution: Use optimization methods to find the best optimal value for w.

Basic Strategy for Logistic Regression:
1) Find the gradient / Hessian of our negative log likelihood. -
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2) Find optimal values for w, guided by information given to us by the gradient g
and Hessian H.

Optimization Techniques:

1) Steepest Descent (Uses only gradient information)

2) Newton’s Method (Requires gradient and Hessian)

3) Quasi-Newton (Requires gradient only, estimates Hessian)



Steepest Descent

Stepsize = 0.1 Stepsize = 0.6

Wk+1 = Wk — Nk Va f (W)
\ 7N

New value for “w” at iteration k + 1 Stepsize Gradient evaluated at w,



Newton’s Method

Uses second order information, the Hessian (curvature at f(x)) to find w.

For Logistic Regression, the Hessian is positive definite,
which guarantees a convex optimization problem.

Gradient Method (slower)

Newton’s Method (faster)

Notes:
1) Requires the inversion of the Hessian, which is computationally expensive.

2) For this method to work efficiently, Hessian must be positive definite.
3) When computing the inverse of H is too expensive, we can use Quasi-Newton methods.

Check out Ben’s Demo for an interactive example!



