Final Review CS195F
Part 1

Dae Il Kim

Topics Covered

Generative vs. Discriminative Models

Bayesian Decision Theory
Linear vs. Logistic Regression
Kernels & Gaussian Processes

Clustering & K-means Algorithms

Some figures & slides taken from Sudderth’s Lecture Notes & Murphy’s ML Book



Generative vs. Discriminative Models

e What's the difference?

Model Parameters

Generative Models pata \, /
+ Training: Learn prior and likelihood: p(y | 0),p(x | y, 6)
« TJest: Posterior from Bayes' rule: \

p(y | :13) X p(y | 9)]?((13 | yve) Input Features

Discriminative or Conditional Models

« Training: Learn posterior:

« Test: Apply posterior: p (y ‘ £, 9)

« Con: Easier to incorporate domain knowledge generatively
« Con: Cannot handle missing features, no model of p(x)

* Pro: No need to design an accurate model of p(z)



Types of Generative/Discriminative
Models

Examples of Generative Models

- Naive Bayes
- Gaussian Discriminant Analysis

- Linear Discriminant Analysis

Examples of Discriminative Models

- Linear Regression
- Bayesian Linear Regression
- Logistic Regression

- Gaussian Processes



Nailve Bayes

* The simplest of our generative classification models where
input features (X) are assumed to be independent for a
given class (Y = c).

(i.e. Spam, Not Spam)

Naive Bayes
Graphical Model

X2 . X3 . Xy . Figure from Murphy (2012)
Input Features (i.e. word counts of Viagra)

Generative since we
( x.0) p(y = ¢|0)p(x|y = ¢, 0) are mocenng the
P\Y = C|X, — generative process
Zc' ply = (-/‘9)1)(}({?/ =, 0) for our features X

Placing a non-uniform prior on y allows us to do MAP estimation (e.g. Dirichlet / Multinomial)



Gaussian Discriminant Analysis

Our features are continuous and we place a Gaussian prior on our class conditional densities

Prior Term Likelihood Term
ply=c|m)=Cat(y=cl|m) plx|y=c0)=N(@|pc, )

Deriving the posterior using Bayes Rule

_ _ p(y=c|m)p(z|y=c,0)
p(y = C ‘ T, L, 6) o 2:1 p(y=c/|m)p(x|y=ct,0)

Note: This model becomes Naive Bayes when the class covariances are diagonal.

me|2mEe| 72 exp [—5(x — p) "2 (x — )]

2 c

Y o Ter |23 |_% exp [—%(x — uc,)'f'Ej (x — pc,)]

ply =c|x,0) =



Linear Discriminant Analysis

When our class conditional covariance parameters are all equal so that: ZC =

The boundaries all become linear functions, thus the term Linear Discriminant Analysis
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Figure from Murphy (2012)
Note: This was the key in solving the midterm exam question 3.



Linear Regression / Bayes Linear
Regression

Feature Weights (Learned)

Directly maximize Y
assuming it is Gaussian

Incorporate a basis

function to better model

Y. Model is still linear
since w is linear.

Basis functions need to
be carefully chosen to
avoid overfitting. Here
we have a basis function

of polynomial degree 14.

Offset/Bias Term

Input/Covariates

p(ylx. 8) = N (ylwo + w' x,0?)

Basis Function

p(y|x,0) = N(y|lw' ¢(x),0?)

degree 14

2n

o(x) = [1,z,22%,... 2%

Placing a Gaussian prior on
w results in a model called
ridge regression and leads
to MAP estimation.



Logistic Regression

Recall the Logistic Function

Binary Logistic Regression
1

1-|-ea:p(—wT:I:) p(y ’ Qj,w) = Bern(y ‘ U(wTCU)>

o(wlx) =

Loglstlc Functlon Multi-Class Logistic Regression

|

09

| oy |z, W)= Cat(y | S(W"x))
Z: Where S is the softmax function
Zj SC(WT:IZ) _ exp(w! z)

03f o > ok exp(wgaz)
021

01

Learning our weights requires us to solve
0 " ~ 3 . .
-10 -5 0 5 10 a complex convex optimization problem.

Returns a value between 0 and 1



Bayes Decision Theory
The optimal action in Bayes Decision theory is minimizing the posterior expected loss

plalx) £ By [L(y, @) = Y Ly, a)p(y[x)
Yy

The sum becomes an integral when y is continuous

What kind of a decision minimizes this loss function? @ MAP Estimate

0 ifa=y
L(y,a) =1(y # a) = e
(y,a) =1y # a) 1 ifaty
Predicted class labels Consider that not all losses are equal
.-0 — 1 l) — () / (e.g. cancer tests)
T Loss (FN)
Y = 1 0 1 The loss function can also be
Yy = 0 Losg(FP) 0 written in a matrix format if y can

take K discrete classes.
True class labels



tpr

Bayes Decision Theory

ROC Curves (Binary Classification) Precision Recall Curves
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pPr .
Useful when there are roughly a Useful when trying to _detect arare
similar number of positives and event or there are a high number of
negatives (e.g. link prediction in a negatives (e.g. object recognition)
binary graph
v graph) Recall: Precision:
TPR=TP/P iti e . rp :
/ (total positives) \— ~ply=1|y=1) \— =ply=1|y=1)
Ny N4

FPR = FP / N (total negatives)
TP /(TP + FN) TP /(TP + FP)



Surrogate Loss Functions

What kind of loss is L2 loss? sl
Differentiable? (YES) 4
Provides Sparisty? (NO) st

3p
What kind of loss is L1 loss? 25k %%

Differentiable? (NO)
Provides Sparisty? (YES)

Note, previous lecture assumed L1 and L2 loss with 0s}
logistic and linear regression respectively. This is
incorrect, either can be performed for both.

0 -

What kind of loss is Huber loss? 02 -2 ® 0

N

A compromise between the two. Provides L2 regularization for errors smaller than
delta and provides L1 regularization for errors larger than delta.

Advantages? Robust to outliers and is differentiable everywhere
1

p(ylx,w,b) = Lap(ylw’x,b) o exp(—7 |y — w'x|)



Kernels & Mercer’s Theorem

A Kernel function takes two inputs (x1, x2) and maps this to some real value that
denotes the similarity between these inputs.

k: XA XX —=R /C(-?Jz',-flfj) :]‘C(CUj,CCz')
Intuition: Larger values indicate inputs are “more similar”

Often symmetric and non-negative, but not necessary constraints

Mercer’s Theorem° ANY positive semidefinite kernel can be written as:

for some feature mappin
Z o (z;) pping ¢

k( 1“1} (but may need d — 00)

Kernelizing a Learning Algorithm
Start with any learning algorithm based on features ¢(x)
(Don’t worry that computing features might be expensive or impossible.)

Manipulate steps in algorithm so that it depends not directly on
features, but only their inner products: k(z;,z;) = ¢(x;)? ¢(z;)




Gaussian Processes

We can rewrite our parametric form for linear regression via kernels:

f(’B> — ’U)T@(gj) (b(’,l“) c Rmxl
Assume a Gaussian prior on our weights
p(w) = N(w | O:(_)g_l_[,m) w E Rﬂle

The joint predictive distribution results in a Gaussian defined via a Kernel function

p(f) =N(f0,a7'®d") = N(f | 0, K)

This results in a Gaussian process, a
distribution over functions where any
finite subset of these functions are
jointly Gaussian distributed. (no need
to learn weights w)




Gaussian Process Regression

To perform prediction, we understand that by definition of the GP, the
joint distribution has the following form:

Pick your favorite Kernel!

f v K K* a) Squared Exponential
£ N/ N , KT K b) Radial Basis Kernel
* M * * % c) Polynomial Kernel

To make a prediction, we need to apply standard Gaussian formulas for the
posterior mean and covariance (assuming noise-free observations y = f(x)):

K. = r(X,X.)

p(£[X,, X f) = N“*'“*’Z*)/ l

n, = wp(X,)+ K’i’K—l(f — (X))  NxDTest Data
¥, = K,..—KI'K 'K,

\K** = r(X., X,



Gaussian Process Regression
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Kk(z,z') = 0F exp(—555(z —2')°)
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Squared exponential kernel

Note: Learning hyperparameters within the Kernel require
fancier learning techniques (i.e. discrete grid search)



Gaussian Processes

GP Classification is similar to Logistic Regression, but uses kernels rather than features

p(yi | 4, fi) = Ber(y; | sigm(f;))

Again, no closed form form the posterior, have to use convex optimization tools

Final note on GPs: Kernels or Features? Really depends on your dataset...

N —> number of training examples

M —> number of features

J, —> cost of kernel function evaluation, at worst (O (M)
(I) —> NxM matrix evaluating each feature for all training data

- Feature-based linear regression:  O(NM? + M?)
« Kernel-based GP regression: O(LN? + N?)



Pick some random centroids

K-Means and Clustering

One of the simplest clustering algorithms out there, makes hard cluster
assignments to data points. Also called hard EM (covered more in part 2)

-2 0 2

Recalculate centroids

(b)

142 W
X Jf’
: .

Calculate Euclidean
Distances to centroids.
Make assignments.

-2 0 2
Make new assignments
& repeat

MSE on test vs K for K-means
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Test error, more K lowers MSE,
but can overfit the data. MSE not
the best metric for K-means to
determine model selection.

Bishop et. al 2006



Summary

20,000 Feet Overview:

When you're interested in predicting the output of your data and your training data
has labels, we often turn to supervised learning techniques.

Many of these techniques can be split into either generative or discriminative models.
Generative models assume the generative process for our features while discriminative
models work directly on maximizing our likelihood.

Choosing a good model requires understanding the inner workings of the model’s
behavior. An overly complicated model does not guarantee better performance.

Unsupervised learning is much harder (part 2) and inference/learning as a result
becomes considerably more difficult.

Congratulate yourself if you feel you have some mastery over this material. This is a
hard subject, but one well worth learning!



