
Introduction to 
Machine Learning 

Brown University CSCI 1950-F, Spring 2012 
Prof. Erik Sudderth 

Lecture 6: 
Decision Theory for Continuous Estimation 

Bayesian Model Selection 
Directed Graphical Models 

Many figures courtesy Kevin Murphy’s textbook, 
Machine Learning: A Probabilistic Perspective 



Decision Theory 
unknown hidden state of “nature” 

observed data 

set of possible actions we can take 

real-valued loss function:  the price we pay if we 
choose action a, and y is the true hidden state 

y ∈ Y
x ∈ X
a ∈ A
L(y, a)

•! Goal:  Choose the action which minimizes the expected loss 

•! Some averaging is necessary because we don’t know y 
•! Two notions of expectation:  Bayesian versus frequentist 

•! Some communities speak of maximizing expected utility, 
which is equivalent if utility equals negative loss 



Losses for Continuous Estimation 
unknown continuous latent variable 

observed data, can take values in any space 

action is to estimate value of the latent variable 

function giving loss for all possible mistakes 

x ∈ X

L(y, a)
A = Y

•! Common choices for continuous loss functions: 

y ∈ Rd

L(y, a) = (y − a)2

L(y, a) = |y − a|

�2 loss, squared error

�1 loss, absolute error

L(y, a) = |y − a|q q > 0 tunable parameter



Continuous Loss Functions 

q = 2.0 q = 1.0

q = 0.5 q = 0.05



Minimizing Expected Loss 

•! The posterior expected loss of taking action a is 

•! The optimal Bayes decision rule is then 

•! Bayesian estimation requires both model and loss 

unknown continuous latent variable 

observed data, can take values in any space 

action is to estimate value of the latent variable 

function giving loss for all possible mistakes 

x ∈ X

L(y, a)
A = Y

y ∈ Rd

ρ(a | x) = E[L(y, a) | x] =
∫

Y
L(y, a)p(y | x) dy



Optimal Bayesian Estimators 
ρ(a | x) = E[L(y, a) | x] =

∫

Y
L(y, a)p(y | x) dy

L(y, a) = (y − a)2

L(y, a) = |y − a|

�2 loss, squared error

�1 loss, absolute error

L(y, a) = |y − a|q q > 0 tunable parameter

ŷ = E[y | x] =
∫

Y
yp(y | x) dyPosterior 

Mean 

∫ ŷ

−∞
p(y | x) dy =

∫ ∞

ŷ

p(y | x) dyPosterior 
Median 

No general closed form, 
but approaches MAP as q → 0

ŷ = argmax
y

p(y | x)



Warning:  MAP may be atypical 

mean mode 

The MAP pseudo-loss penalizes all errors equally, 
but continuous MAP estimates are incorrect with probability 1 



Warning:  MAP not invariant 
to reparameterization 

�= g(x̂)
in  
general 

y = g(x)

ML estimates are invariant to reparameterization, 
as are Bayesian estimates based on non-degenerate losses. 



What are Good Loss Functions? 

Journal of the Optical Society of America A, July 1997 

e ∈ Rm

Reflectance at location j: 
sj ∈ Rm

rj = A(e⊗ sj)
A ∈ R3×M



Toy Example 

(a, b) ∼ Unif([0, 4]× [0, 4])

p(y | a, b) = Norm(y | ab,σ2)



MAP Loss Function 



Quadratic Loss Function 



Local Mass Loss Function 



Modeling Human Decisions 

Koerding, Science Magazine, Oct. 2007 



Bayesian Ockham’s Razor 

William of Ockham 

Plurality must never be 
posited without necessity.  

D
m

θ

data 

model 

parameters 

Even with uniform p(m), marginal likelihood provides a model selection bias 



Computing Marginal Likelihoods 

p(D | m) ≈ 1

S

S∑

s=1

p(D | θ(s)) θ(s) ∼ p(θ | m)

Monte Carlo Approximation 

Conjugate Priors 

p(θ) =
1

Z0
q(θ) p(θ | D) =

1

p(D)
p(θ)p(D | θ)

=
1

ZN
q(θ | D)

Beta-Bernoulli, Dirichlet-Multinoulli, Gaussian-Gaussian, etc. 

log p(D) = logZN − logZ0
Difference of log 

normalization constants 



Example:  Is this coin fair? 
M0: Tosses are from a fair coin: 
M1: Tosses are from a coin of unknown bias: 

θ = 1/2

θ ∼ Unif(0, 1)

Marginal Likelihoods 

Number of heads in N=5 tosses 

M1 

M0 

Very unbalanced counts are 
much more likely to have been 

caused by a biased coin 



Model Selection: Bayes’ Factors 

As suggested by Jeffreys.  Caveats:  Can exhibit sensitivity  
to choice of priors for each model’s parameters. 

Most reliable when comparing pairs of “similar” models. 



Directed Graphical Models    
Chain rule implies that any joint distribution equals: 

Directed graphical model implies a restricted factorization: 

pa(t) → parents with edges pointing to node t

nodes → random variables

Valid for any directed acyclic graph (DAG): 
equivalent to dropping conditional 
dependencies in standard chain rule 



Name That Model 

Naïve Bayes: 



Name That Model 

Tree-augmented Naïve Bayes 



Name That Model 

Markov chain: 



Name That Model 

Second-order Markov chain: 


