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Lecture ©:
Decision Theory for Continuous Estimation
Bayesian Model Selection
Directed Graphical Models

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



Decision Theory

y € )) — unknown hidden state of “nature”
re X — observed data
a < ,A —— set of possible actions we can take

T, real-valued loss function: the price we pay if we
(ya (I) choose action a, and y is the true hidden state

* Goal: Choose the action which minimizes the expected loss
0(x) = argminE [L(y, a)] by : X — A
acA
* Some averaging is necessary because we don’t know y
« Two notions of expectation: Bayesian versus frequentist
« Some communities speak of maximizing expected utility,
which is equivalent if utility equals negative loss



Losses for Continuous Estimation

(TS R%—  unknown continuous latent variable

T € X — observed data, can take values in any space

A = y —— action is to estimate value of the latent variable

L(y’ (I) —— function giving loss for all possible mistakes
« Common choices for continuous loss functions:
L(y,a) = (y — a)* {2 loss, squared error

L(y, a) = |y —a ¢1 loss, absolute error

L(y,a)

y — al? ¢ > 0 tunable parameter



Continuous Loss Functions
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Minimizing Expected Loss

(TS R%—  unknown continuous latent variable

T € X — observed data, can take values in any space

A = y —— action is to estimate value of the latent variable

L(y’ (I) —— function giving loss for all possible mistakes

« The posterior expected loss of taking action a is

pla] @) = BlL(g.a) | 2] = | L(.a)ply| o) dy
Y
« The optimal Bayes decision rule is then

0(x) = arg min p(alx)

« Bayesian estimation requires both model and loss



Optimal Bayesian Estimators

o(a| ) = E[L(y,a) | 2] = /y Ly, a)p(y | ) dy

L(y,a) = (y — a)2 (5 loss, squared error

Posteri .
Mean y=Elyl|z = / yp(y | z) dy
Yy
L(y, a) — |y — a| /1 loss, absolute error
Posterior ! >
Median / py | z) dy = / ply | x) dy
oo 0
L(y,a) = |y —a|? ¢ > 0 tunable parameter
No general closed form, —
but approaches MAPas q — ( Yy al'g manp (y ‘ L )
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Warning: MAP may be atypical
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The MAP pseudo-loss penalizes all errors equally,
but continuous MAP estimates are incorrect with probability 1




Warning: MAP not invariant
to reparameterization
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ML estimates are invariant to reparameterization,
as are Bayesian estimates based on non-degenerate losses.



What are Good Loss Functions?

Bayvesian color constancy

Journal of the Optical Society of America A, July 1997
David H. Brainard

Department of Psychology, University of California, Sanfa Barbara, California 93106

m
William T. Freeman e c R
MERL, a Mitsubishi Electric Research Laboratory, Cambridge, Massachusefts 02139

Reflectance at location j:
S; € R™




Toy Example
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MAP Loss Function
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(a) MAP loss function

L}

(d) {minus) MAP expected loss



Quadratic Loss Function

(b) MMSE loss function

(e) (minus) MMSE expected loss



Local Mass Loss Function

(¢} MLM loss function

(f} (minus) MLM expected loss



Modeling Human Decisions

Very low Motor errors
uncertainty

A

Decision theory

World knowledge:
how probable is each
outcome as a function

of the decision?

Optimal
decisions

Cost function: how
good or bad is each _|
potential decision
outcome?

Koerding, Science Magazine, Oct. 2007



BayeS|an Ockham’s Rzor .

P(D) posited without necessity.” r‘r ]

i ﬁ L i!-.‘.:1 )
D— waa e

™M —» model

0 — parameters [ A

W/ll/am of Ockham
Dy D
p(D|m)p(m)
D) = -
HiD) = D) PP = [ pOlopolma

Even with uniform p(m), marginal likelihood provides a model selection bias



Computing Marginal Likelihoods
p(Dlm) = [ p(DI6)p(6lm)as

Monte Carlo Approximation

p(D | m) ~ Szpmm 0(5) ~ p(0 | m)
Conjugate Priors  Beta-Bernoulli, Dirichlet-Multinoulli, Gaussian-Gaussian, efc.
1 1
0) = —q(6 p(@ | D)= ——p@)p(D |0
p0) = 540) (0] D)= —p(Op(D | 6)
1
0| D
~ —al0] D)

Difference of log

normalization constants lOg p (D) — lOg A N — log A 0



Example: Is this coin fair?

M,: Tosses are from a fair coin: 0=1/2
M. : Tosses are from a coin of unknown bias: 6 ~ Unif(0, 1)

Marginal Likelihoods

1\ " _ _ B(ai + N1, a0 + No)
PO = (3)  pOM) = [ oDy = =H L0

log, , P(DIM1)
O T ['(a)['(b)

B(a,b) =
067 ‘ (a,0) ['(a + b)
-0.81 M7
Very unbalanced counts are
much more likely to have been

x Mo j caused by a biased coin

Number of heads in N=5 tosses



Model Selection: Bayes’ Factors

p(D|M;
BF; o := %
Bayes factor BF'(1,0) Interpretation

B < Fln Decisive evidence for Hy

B < 1_10 Strong evidence for Hy
1_10 < B < % Moderate evidence for Hy
% < B<l Weak evidence for Hy
l< B<3 Weak evidence for H,
3< B <10 Moderate evidence for H,

B >10 Strong evidence for H,

B =100 Decisive evidence for H,

As suggested by Jeffreys. Caveats: Can exhibit sensitivity
fo choice of priors for each model’s parameters.
Most reliable when comparing pairs of “similar” models.



Directed Graphical Models

Chain rule implies that any joint distribution equals:

p(z1:p) = p(x1)p(x2|1)p(23|T2, T1)p(T4|21, T2, 23) ... P(TD|T1:D-1)
Directed graphical model implies a restricted factorization:
p(x1.p|G) = Hp Tt|Xpa(t))

nodes — random variables
pa(t) — parents with edges pointing to node ¢

Valid for any directed acyclic graph (DAG):

equivalent to dropping conditional
dependencies in standard chain rule

p(x1:5) — p(371)p(372\331



Name That Model

D

Naive Bayes: p(y,x) = p(y) H p(x;y)

.

j=1



Name That Model

Y

X9

Xy

Tree-augmented Naive Bayes



Name That Model

X1 L9 L3

D
Markov chain: p(XlzD) — p(iUl) HP(%‘CUt—l)
t=1



Name That Model

X1 L9 X3 x4

Second-order Markov chain:
T

p(x1:7) = p(w1, 32)p(ws|y, m2)p(zsalre, 3) ... = pla1,22) | [ p(elwi—1, 2—2)
1=3



