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Lecture 14: 
Sparsity & L1 Regularization:  The Lasso 

Many figures courtesy Kevin Murphy’s textbook, 
Machine Learning: A Probabilistic Perspective 



•! L0 penalty comes from Bernoulli prior on feature usage 
indicators, and large variance prior on non-zero weights: 

 
•! L2 penalty comes from Gaussian regression likelihood: 

Feature Selection for Regression 

||w||p =




D∑

j=1

|wj |p



1/p

||w||0 = number of 
nonzero entries 

•! Problem:  Optimization is hard combinatorial problem! 

f(w) = ||y − Φw||22 + λ||w||0

p(yi | xi, w, γ,σ
2) = N (yi |

D∑

j=1

γjwjφj(xi),σ
2)



Greedy Deterministic Search 

Forward Selection 

Backward Selection 

•! Consider all possible ways of adding (forward selection) or 
removing (backward selection) one feature 

•! Add or remove the best feature, or stop if the current model is best 
•! Wrapper method:  Can be applied to any objective.  Guarantees??? 



Too Many Models 

Pascal’s Triangle (http://www.mathwarehouse.com/) 



Laplace Distribution 
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Probability Densities Log Probability Densities 

When used as a prior on vectors of model parameters: 
•! Compared to Gaussian, stronger bias that many near zero 
•! When find MAP estimate, some weights are exactly zero 
•! Learning harder than for Gaussian, but still convex 

Lap(x | µ,λ) = λ

2
exp(−λ|x− µ|)



Constrained Optimization 

Where do level sets of the quadratic regression 
cost function first intersect the constraint set? 

Gaussian prior 
L2 regularization 
Ridge regression 

Laplacian prior 
L1 regularization 
Lasso regression 

p(w) =

D∏

j=1

Lap(wj | 0, ρ) p(w) =

D∏

j=1

Norm(wj | 0,σ2)

f(w) = ||y − Φw||22 + λ||w||1 f(w) = ||y − Φw||22 + λ||w||22



Gradient-Based Optimization 

Objective Function:   
Negative Gradient: 

Gaussian prior 
L2 regularization 
Ridge regression 

Laplacian prior 
L1 regularization 
Lasso regression 

p(w) =

D∏

j=1

Lap(wj | 0, ρ) p(w) =

D∏

j=1

Norm(wj | 0,σ2)

f(w) = − log p(w)

−f ′(w)

(Informal intuition:  Gradient of L1 objective not defined at zero) 



Generalized Norms: Bridge Regression 

b=2 b=1 b=0.3 

•! Convex objective function (true norm):  b ! 1 
•! Encourages sparse solutions (cusp at zero):  b " 1 
•! Lasso/Laplacian (convex & sparsifying): b = 1 
•! Ridge/Gaussian (classical, closed form solutions): b = 2 
•! Sparsity via discrete counts (greedy search): b ! 0 
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Comparing Regression Posteriors 

b=2 b=1 b=0.4 



Shrinkage for Orthonormal Features 

Soft thresholding: 
Least Absolute Selection  
& Shrinkage Operator  

Hard thresholding: 
Goal of discrete 
feature selection 

Linear Shrinkage: 
All coefficients 

remain non-zero 

L0 L2 L1



Regularization Paths 
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Prostate Cancer Dataset with N=67, D=8 
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Ridge: Bound on L2 norm Lasso: Bound on L1 norm 

Vertical lines are models chosen by cross-validation 



Optimization: Projected Gradient 

Generic method 
based on gradient & 
projection operators: 

Projection onto 
non-negativity 
constraint is trivial: 

Good properties, 
extensions choose 
even better descent 
directions# 



Potential Issues with the Lasso 

•! MAP estimate is atypical:  Samples from the prior have all 
weights non-zero with probability one 
•! Full Bayesian learning requires richer prior models 

(often perform better at greater computational cost) 
•! In addition to setting some coefficients exactly to zero, 

non-zero coefficients are significantly biased towards zero 
•! Two-stage estimators estimate weight vector support, 

then re-estimate weights with a less strong prior 
•! Theory guarantees support recovery in some conditions, 

but can be unstable when features are strongly correlated 
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