Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2012

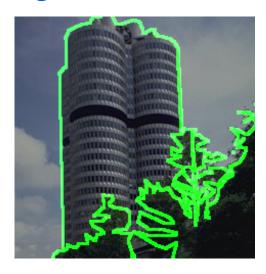
Instructor: Erik Sudderth

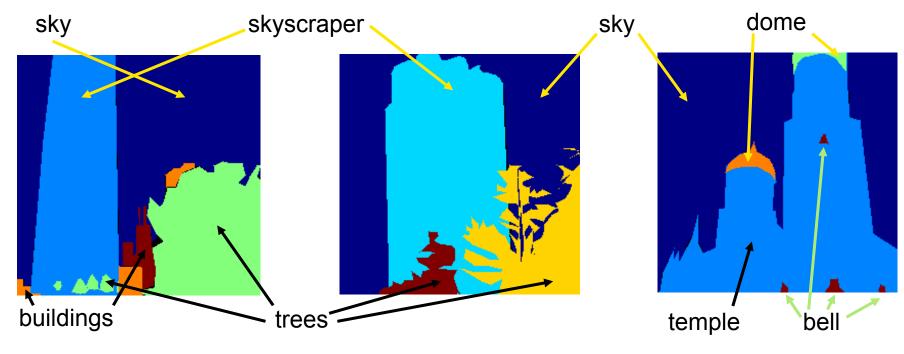
Graduate TAs: Dae Il Kim & Ben Swanson

Head Undergraduate TA: William Allen

Undergraduate TAs: Soravit Changpinyo, Zachary Kahn, Paul Kernfeld, & Vazheh Moussavi

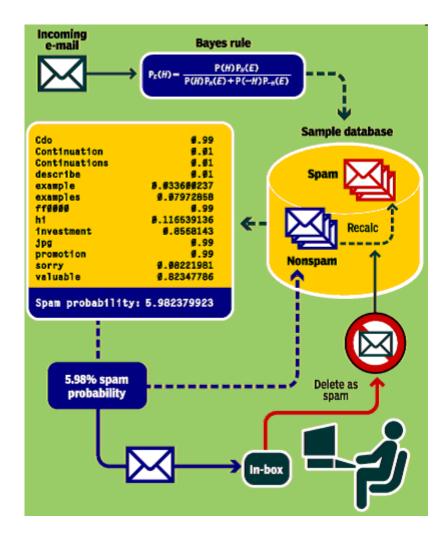
Visual Object Recognition





Spam Filtering

- Binary classification problem: is this e-mail spam or useful (ham)?
- Noisy training data: messages previously marked as spam
- Wrinkle: spammers evolve to counter filter innovations



Spam Filter Express http://www.spam-filter-express.com/

Collaborative Filtering

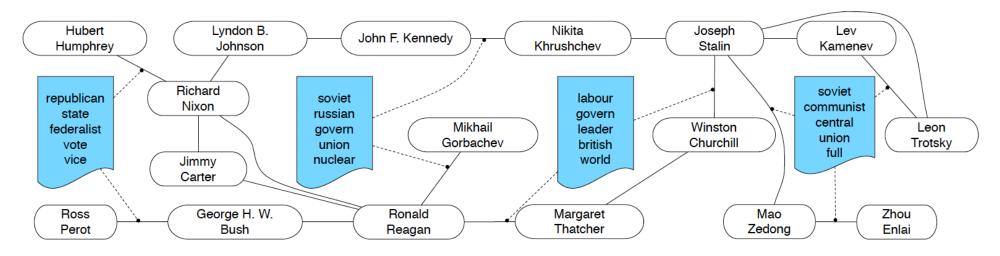
Leaderboard

Display top 20 V leaders.

Rank	Team Name	Best Score	% Improvement	Last Submit Time
1	The Ensemble	0.8553	10.10	2009-07-26 18:38:22
2	BellKor's Pragmatic Chaos	0.8554	10.09	2009-07-26 18:18:28
Grand	<u> 1 Prize</u> - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:49
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:52
5	Vandelay Industries!	0.8579	9.83	2009-07-26 02:49:53
6	<u>PragmaticTheory</u>	0.8582	9.80	2009-07-12 15:09:53
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:25
8	<u>Dace</u>	0.8603	9.58	2009-07-24 17:18:43
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:08
10	BellKor	0.8612	9.48	2009-07-26 17:19:11
11	BiqChaos	0.8613	9.47	2009-06-23 23:06:52
12	Feeds2	0.8613	9.47	2009-07-24 20:06:46
Progr	ess Prize 2008 - RMSE = 0.8616 -	Winning Tean	n: BellKor in BigCh	aos
13	xiangliang	0.8633	9.26	2009-07-21 02:04:40
14	Gravity	0.8634	9.25	2009-07-26 15:58:34
15	Ces	0.8642	9.17	2009-07-25 17:42:38
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:26:12
17	Just a guy in a garage	0.8650	9.08	2009-07-22 14:10:42
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00:54
19	J Dennis Su	0.8658	9.00	2009-03-11 09:41:54
20	acmehill	0.8659	8.99	2009-04-16 06:29:35
Progr				
Cinen	natch score on quiz subset - RMSE	= 0.9514		
Cilici	MISE MISE	0.5514		

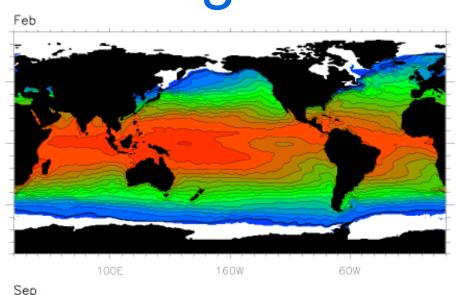
Social Network Analysis

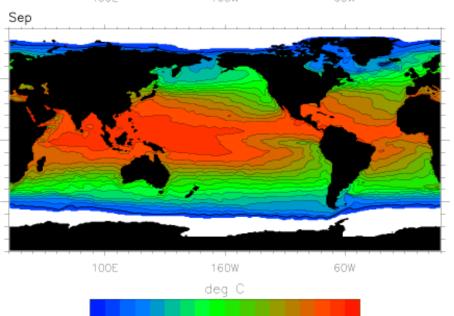
- Unsupervised discovery and visualization of relationships among people, companies, etc.
- Example: infer relationships among named entities directly from Wikipedia entries



Climate Modeling

- Satellites measure seasurface temperature at sparse locations
 - Partial coverage of ocean surface
 - Sometimes obscured by clouds, weather
- Would like to infer a dense temperature field, and track its evolution

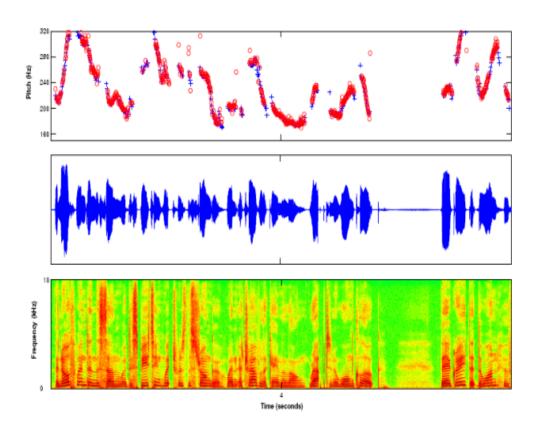


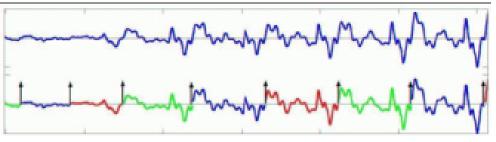


12 16

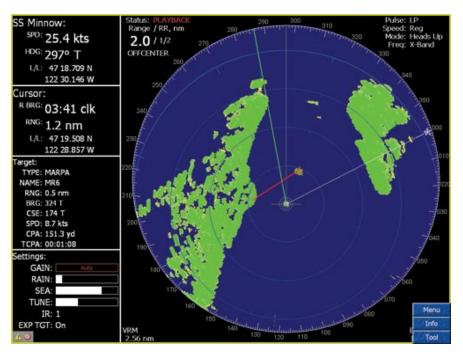
Speech Recognition

- Given an audio waveform, robustly extract & recognize any spoken words
- Statistical models can be used to
 - Provide greater robustness to noise
 - Adapt to accent of different speakers
 - Learn from training

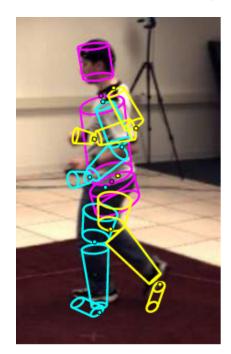


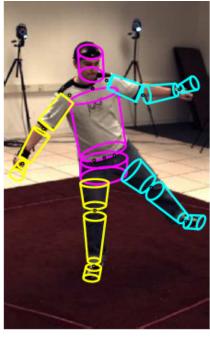


Target Tracking



Radar-based tracking of multiple targets



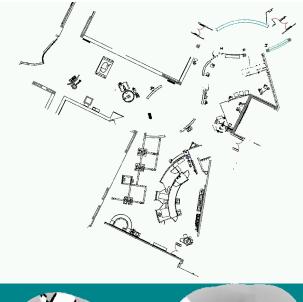


Visual tracking of articulated objects
(L. Sigal et. al., 2009)

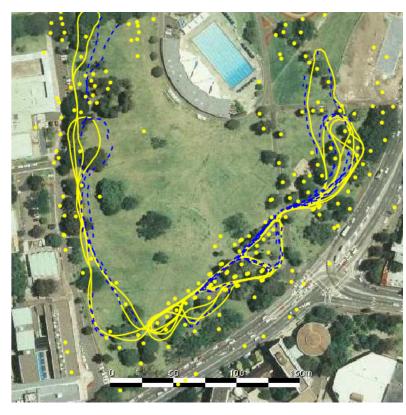
 Estimate motion of targets in 3D world from indirect, potentially noisy measurements

Robot Navigation: SLAM

Simultaneous Localization and Mapping



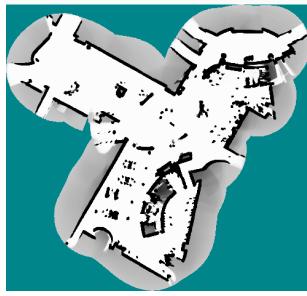
Landmark SLAM (E. Nebot, Victoria Park)



CAD Map

(S. Thrun, San Jose Tech Museum)

Estimated Map



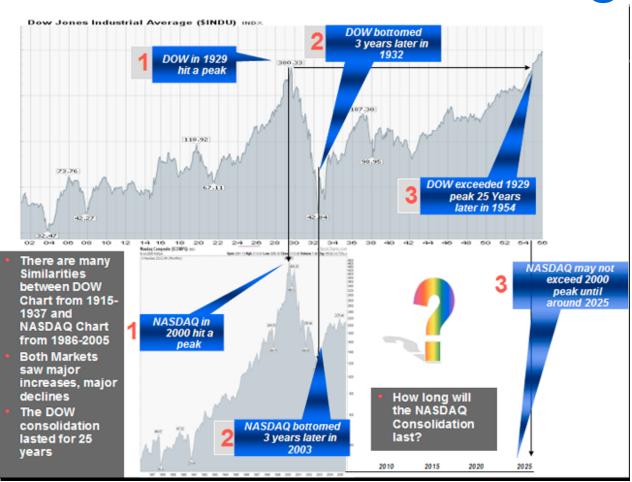
 As robot moves, estimate its pose & world geometry

Human Tumor Microarray Data

- 6830×64 matrix of real numbers.
- Rows correspond to genes, columns to tissue samples.
- Cluster rows (genes) can deduce functions of unknown genes from known genes with similar expression profiles.
- Cluster columns (samples) can identify disease profiles: tissues with similar disease should yield similar expression profiles.

Gene expression matrix

Financial Forecasting



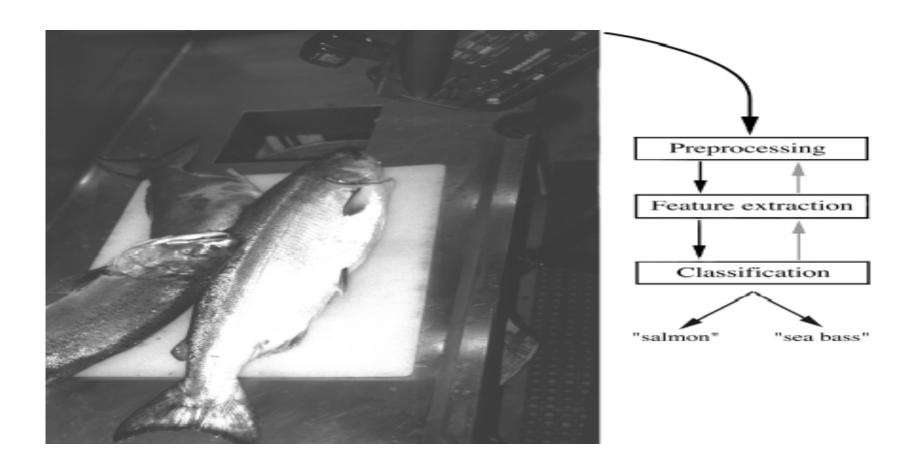
http://www.steadfastinvestor.com/

 Predict future market behavior from historical data, news reports, expert opinions, ...

What is "machine learning"?

- Given a collection of examples (the "training data"), predict something about novel examples
 - The novel examples are usually incomplete
- Example (via Mark Johnson): sorting fish
 - Fish come off a conveyor belt in a fish factory
 - Your job: figure out what kind each fish is

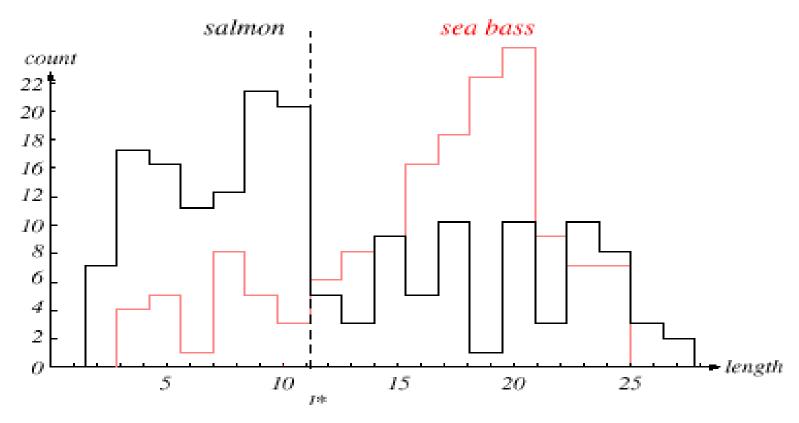
Automatically sorting fish



Sorting fish as a machine learning problem

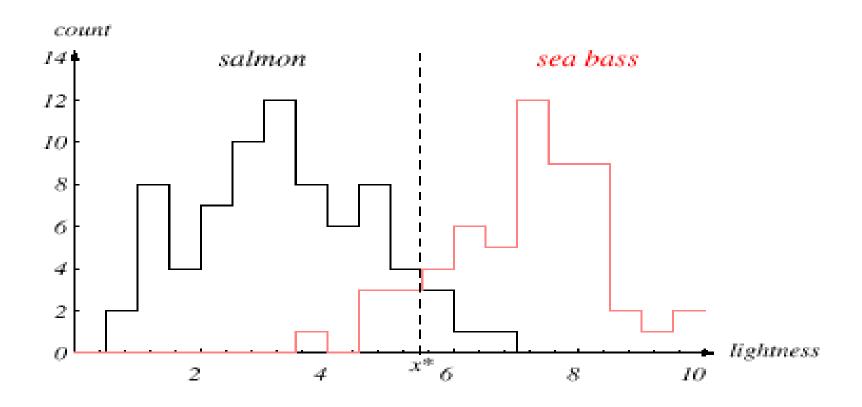
- Training data $D = ((x_1, y_1), ..., (x_n, y_n))$
 - A vector of measurements (*features*) x_i
 (e.g., weight, length, color) of each fish
 - A label y_i for each fish
- At run-time:
 - given a novel feature vector x
 - predict the corresponding label y

Length as a feature for classifying fish

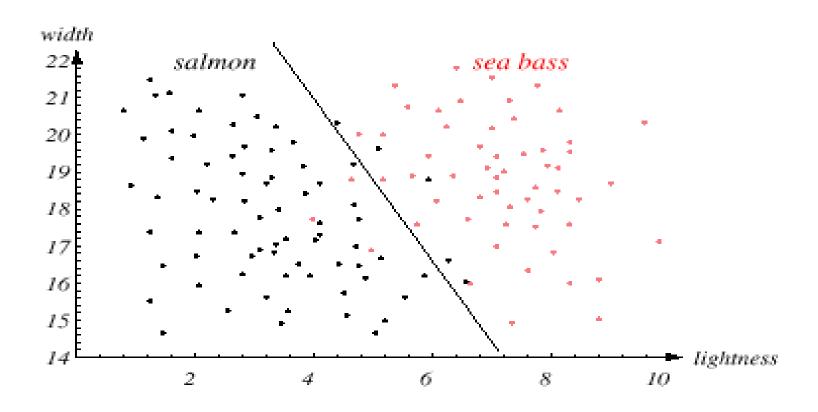


- Need to pick a decision boundary
 - Minimize expected loss

Lightness as a feature for classifying fish

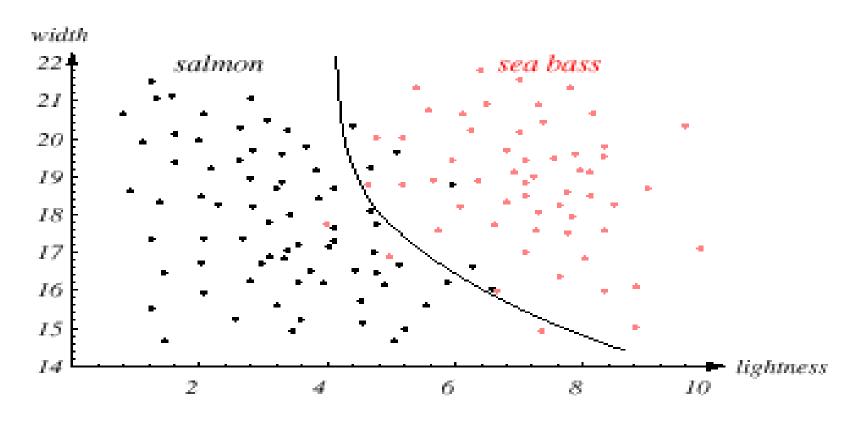


Length and lightness together as features

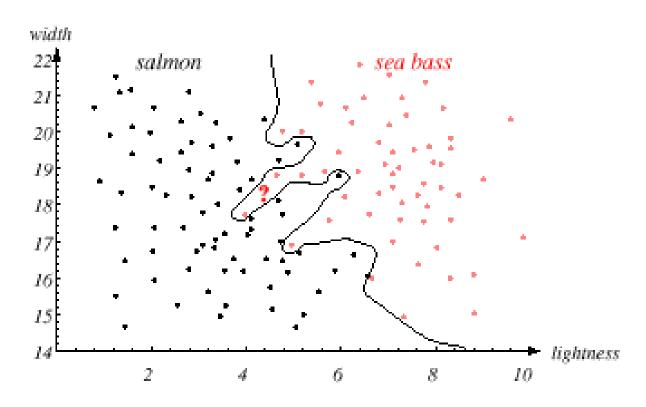


Not unusual to have millions of features

More complex decision boundaries



Training set error ≠ test set error



- Occam's razor
- Bias-variance dilemma
 - More data!

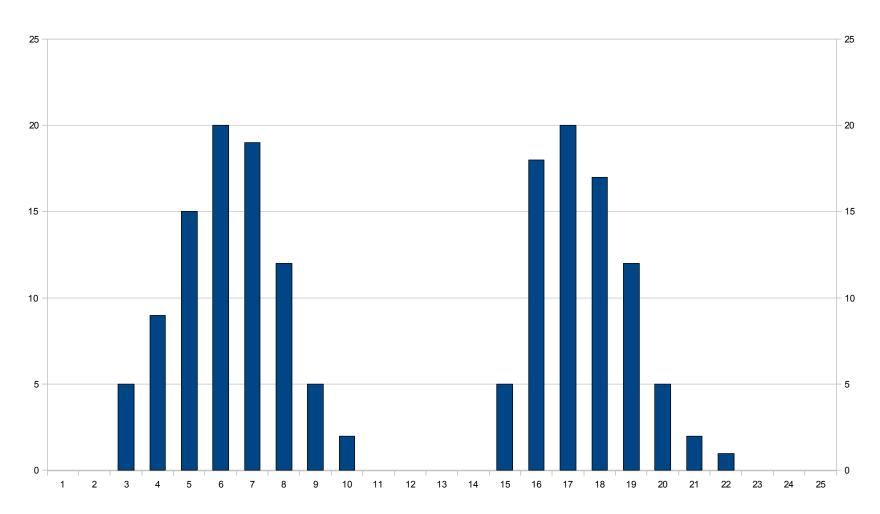
Recap: designing a fish classifier

- Choose the features
 - Can be the most important step!
- Collect training data
- Choose the model (e.g., shape of decision boundary)
- Estimate the model from training data
- Use the model to classify new examples
 - Basic machine learning is about the last 3 steps
 - More advanced methods can help learn which features are best, or decide which data to collect

Supervised versus unsupervised learning

- Supervised learning
 - Training data includes labels we must predict: labels are visible variables in training data
- Unsupervised learning
 - Training data does not include labels: labels are *hidden variables* in training data
- For classification models, unsupervised learning usually becomes a kind of clustering

Unsupervised learning for classifying fish



Salmon versus Sea Bass?

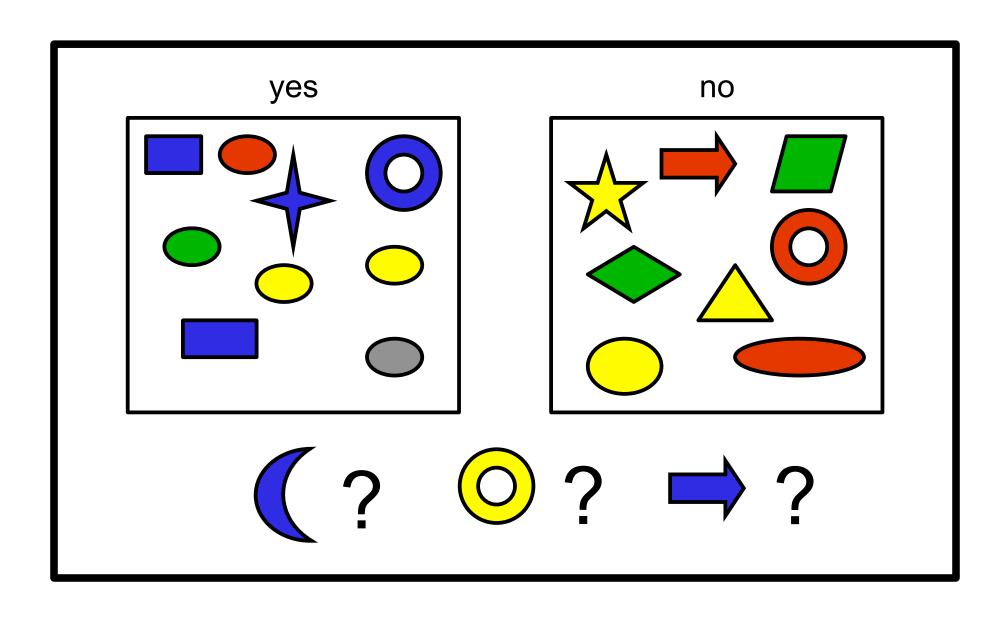
Adults versus juveniles?

Machine Learning Problems

Supervised Learning	Unsupervised Learning	

Discrete classification or clustering categorization Continuous dimensionality regression reduction

Classification Problems



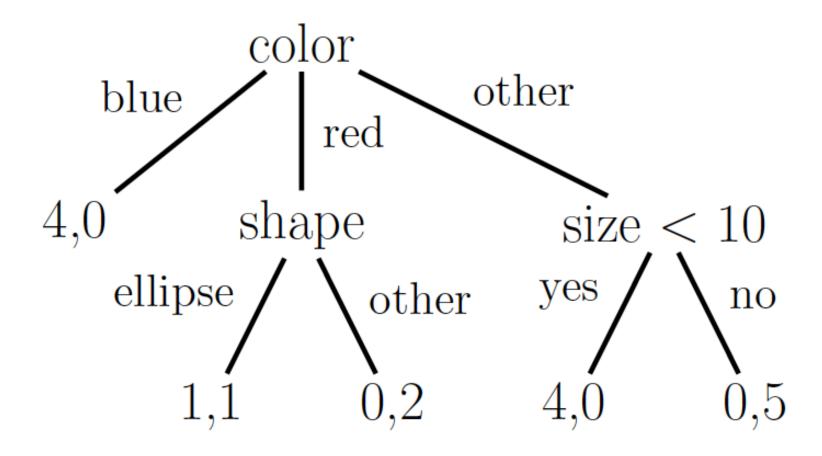
Classification Encoding

d features (attributes)

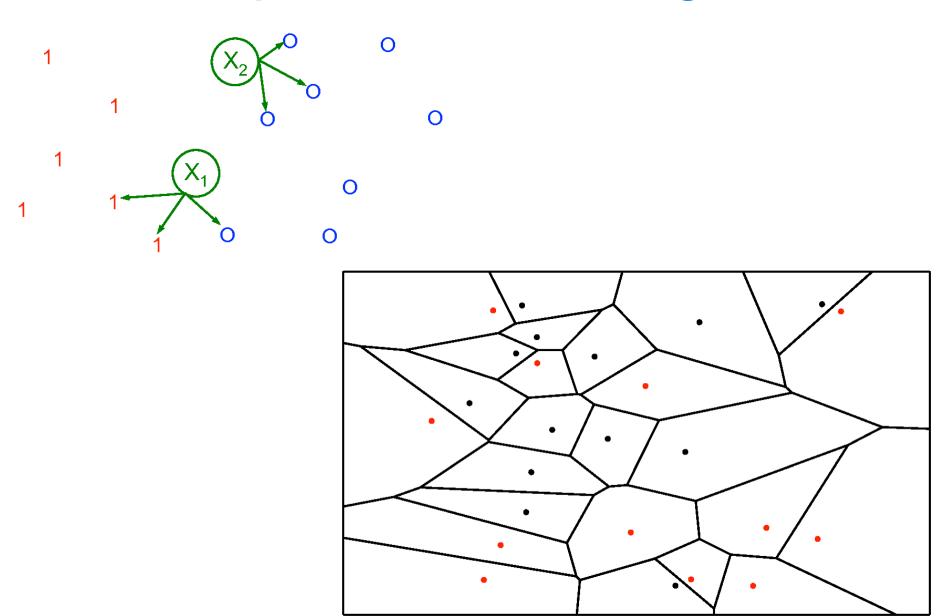
Color	Shape	Size (cm)
Blue	Square	10
Red	Ellipse	2.4
Red	Ellipse	20.7

Binary Label	
1	
1	
0	

Example: Decision Tree



Example: Nearest Neighbor



Issues to Understand

- Given two candidate classifiers, which is better?
 - ➤ Accuracy at predicting training data?
 - Complexity of classification function?
 - Are all mistakes equally bad?
- Given a family of classifiers with free parameters (e.g., all possible decision trees), which member of that family is best?
 - >Are there general design principles?
 - ➤ What happens as I get more data?
 - ➤ Can I test all possible classifiers?
 - ➤ What if there are lots of parameters?

Probability & Statistics

Algorithms & Linear Algebra

Course Prerequisites

- Prerequisites: comfort with basic
 - Programming: Matlab for assignments
 - > Calculus: simple integrals, partial derivatives
 - ➤ Linear algebra: matrix factorization, eigenvalues
 - > Probability: discrete and continuous
- Probably sufficient: You did well in (and still remember!) at least one course in each area
- We will do some review, but it will go quickly!
 - Graduate TAs will lead weekly recitations to review prereqs, work example problems, etc.

Course Evaluation

- 50% homework assignments
 - Mathematical derivations for statistical models
 - Computer implementation of learning algorithms
 - Experimentation with real datasets
- 20% midterm exam: Tuesday March 13
 - > Pencil and paper, focus on mathematical analysis
- 25% final exam: May 16, 2:00pm
- 5% class participation:
 - Lectures contain material not directly from text
 - Lots of regular office hours to get help

CS Graduate Credit

- CS Master's and Ph.D. students who want 2000-level credit must complete a *project*
- Flexible: Any application of material from (or closely related to) the course to a problem or dataset you care about
- Evaluation:
 - Late March: Very brief (few paragraph) proposal
 - > Early May: Short oral presentation of results
 - Mid May: Written project report (4-8 pages)
- A poor or incomplete project won't hurt your grade, but will mean you don't get grad credit

Course Readings Machine Learning: A Probabilistic Perspective

Kevin P. Murphy

University of British Columbia, Canada
http://www.cs.ubc.ca/~murphyk
murphyk@cs.ubc.ca
murphyk@stat.ubc.ca

http://www.cs.ubc.ca/~murphyk/MLbook/index.html
Two-volume reader available at Metcalf Copy Center.

Machine Learning Buzzwords

- Bayesian and frequentist estimation: MAP and ML
- Model selection, cross-validation, overfitting
- Linear least squares regression, logistic regression
- Robust statistics, sparsity, L1 vs. L2 regularization
- Features and kernel methods: support vector machines (SVMs), Gaussian processes
- Graphical models: hidden Markov models, Markov random fields, efficient inference algorithms
- Expectation-Maximization (EM) algorithm
- Markov chain Monte Carlo (MCMC) methods
- Mixture models, PCA & factor analysis, manifolds