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Visual Object Recognition
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Spam Filtering

el
* Binary classification
problem: is this e-mall
spam or useful (ham)? =

* Noisy training data: e :
messages previously
marked as spam :

* Wrinkle: spammers

evolve to counter
filter innovations

Spam Filter Express
http.//www.spam-filter-express.com/



Collaborative Filtering
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Social Network Analysis

* Unsupervised discovery and visualization of
relationships among people, companies, etc.

« Example: infer relationships among named
entities directly from Wikipedia entries
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Chang, Boyd-Graber, & Blei, KDD 2009



Climate Modeling

» Satellites measure sea-
surface temperature at
sparse locations

» Partial coverage of
ocean surface

» Sometimes obscured by
clouds, weather
 Would like to infer a
dense temperature field,
and track its evolution

NASA Seasonal to Interannual Prediction Project
http.//ct.gsfc.nasa.gov/annual.reports/ess98/nsipp.html



Speech Recognition

* Given an audio j\'
waveform, robustly
extract & recognize

any spoken words Mm”“.“'"“ e 'M"

» Statistical models 1
can be used to

» Provide greater gr L e, Gilk gk
robustness to noise -

» Adapt to accent of M“W%“W
different speakers
frsssalos - Myach )
> Learn from training PPNl

S. Roweis, 2004
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Target Tracking
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Rar—based tracking Visual tracking of
of multiple targets articulated objects

(L. Sigal et. al., 2009)

» Estimate motion of targets in 3D world from
iIndirect, potentially noisy measurements



Robot Navigation: SLAM

Landmark PSSERFEC &
SLAM =\ s

*

(E. Nebot, | [aei&

CAD
Map

(S. Thrun,
San Jose Tech Museum)

Estimated
Map

* As robot moves, estimate its
pose & world geometry




Human Tumor Microarray Data

Gene expression matrix

« 6830x64 matrix of real numbers.

- Rows correspond to genes,
columns to tissue samples.

+ Cluster rows (genes) can deduce
functions of unknown genes from
known genes with similar
expression profiles.

 Cluster columns (samples) can
identify disease profiles: tissues
with similar disease should yield

similar expression profiles.




Financial Forecasting
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hit a peak

DOW bortomed
3 years later in
1932
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NASDAQ may not
exceed 2000
peak until
 around 2025
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http.//www.steadfastinvestor.com/

 Predict future market behavior from historical
data, news reports, expert opinions, ...



What is “machine learning”?

« Given a collection of examples (the
“training data™), predict something
about novel examples

« The novel examples are usually incomplete
« Example (via Mark Johnson): sorting fish

« Fish come off a conveyor belt in a fish factory
« Your job: figure out what kind each fish is



Automatically sorting fish
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Sorting fish as a machine
learning problem

. Training data D = ((x,,y,), -, (X.,}.))

« A vector of measurements (features) x
(e.g., weight, length, color) of each fish

« A label y.for each fish

« At run-time:
« given a novel feature vector x
« predict the corresponding label y
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Length as a feature for
CIaSS|fy|ng fish

scilmion | a bass

« Need to pick a decision boundary
. Minimize expected loss

L feretli



Lightness as a feature for
classifying fish
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Length and lightness together as
features
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« Not unusual to have millions of features



More complex decision
boundaries
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Training set error # test set error
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« Occam's razor

o Bias-variance dilemma
« More data!



Recap: designing a fish classifier

« Choose the features
« Can be the most important step!

« Collect training data

« Choose the model (e.g., shape of decision
boundary)

. Estimate the model from training data

« Use the model to classify new examples
. Basic machine learning is about the last 3 steps

. More advanced methods can help learn which
features are best, or decide which data to collect



Supervised versus
unsupervised learning

Supervised learning
» Training data includes labels we must predict:
labels are visible variables in training data
Unsupervised learning
» Training data does not include labels:
labels are hidden variables in training data
For classification models, unsupervised
learning usually becomes a kind of
clustering



Unsupervised learning for
classifying fish
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Salmon versus Sea Bass? Adults versus juveniles?



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

o clustering
categorization

dimensionality

regression )
J reduction




Classification Problems




N cases

Classification Encoding
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d features (attributes)
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Color Shape Size (cm)
Blue Square 10

Red Ellipse 2.4

Red Ellipse 20.7
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0




Example: Decision Tree
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Example: Nearest Neighbor




Issues to Understand

« Given two candidate classifiers, which is better?
» Accuracy at predicting training data?
» Complexity of classification function?
» Are all mistakes equally bad?

* Given a family of classifiers with free
parameters (e.g., all possible decision trees),
which member of that family is best?

» Are there general design principles?

Probability &
»\What happens as | get more data? Statistics
»Can | test all possible classifiers? Algorithms &

»What if there are lots of parameters? LinearAlgebra



Course Prerequisites

* Prerequisites: comfort with basic
» Programming:. Matlab for assignments
» Calculus: simple integrals, partial derivatives
» Linear algebra: matrix factorization, eigenvalues
» Probability: discrete and continuous

* Probably sufficient: You did well in (and still
remember!) at least one course in each area

* We will do some review, but it will go quickly!

» Graduate TAs will lead weekly recitations to
review prereqs, work example problems, etc.



Course Evaluation

50% homework assignments

» Mathematical derivations for statistical models
» Computer implementation of learning algorithms
» Experimentation with real datasets

20% midterm exam: Tuesday March 13
» Pencil and paper, focus on mathematical analysis

25% final exam: May 16, 2:00pm

5% class participation:
» Lectures contain material not directly from text
» Lots of regular office hours to get help



CS Graduate Credit

CS Master’s and Ph.D. students who want
2000-level credit must complete a project

Flexible: Any application of material from (or
closely related to) the course to a problem or
dataset you care about

Evaluation:

» Late March: Very brief (few paragraph) proposal
» Early May: Short oral presentation of results

» Mid May: Written project report (4-8 pages)

A poor or incomplete project won't hurt your
grade, but will mean you don’t get grad credit



Course Readings
MACHINE LEARNING:

A PROBABILISTIC PERSPECTIVE

Kevin P. Murphy
University of British Columbia, Canada
http://www.cs.ubc.ca/~murphyk
murphyk@cs.ubc.ca
murphyk@dstat.ubc.ca

http://www.cs.ubc.ca/~murphyk/MLbook/index.html
Two-volume reader available at Metcalf Copy Center.




Machine Learning Buzzwords

Bayesian and frequentist estimation: MAP and ML
Model selection, cross-validation, overfitting

Linear least squares regression, logistic regression
Robust statistics, sparsity, L1 vs. L2 regularization

Features and kernel methods: support vector
machines (SVMs), Gaussian processes

Graphical models: hidden Markov models, Markov
random fields, efficient inference algorithms

Expectation-Maximization (EM) algorithm
Markov chain Monte Carlo (MCMC) methods

Mixture models, PCA & factor analysis, manifolds



